Rechercher
Bibliographie complète 167 ressources
-
Abstract. Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada and the United States due to the large number of rivers and size of watersheds. Such studies are however very important for analyzing spatial patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper, we present different flood occurrence and impact models based upon statistical and machine learning methods of over 31 000 watersheds spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over thousands of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of the modelled average annual number of people displaced due to flooding in Canada and the US, as well as various scenario analyses. We find for example that an increase of 10 % in average precipitation yields an increase in the displaced population of 18 % in Canada and 14 % in the US. The model can therefore be used by a broad range of end users ranging from climate scientists to economists who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in terms of the displaced population.
-
Storms are the most significant meteorological phenomena that affect the formation of coasts and human livelihood along them. Thus, risks related to coastal storms, such as flooding, loss of land, shipping, and other offshore activity, have had a significant influence on coastal societies and their economies. In the early 21st century, anthropogenic climate change will affect the locations and intensities of coastal storminess, impacting society. Storms are studied not only by natural scientists but also by social scientists. The former deal with the climatologies, dynamics, and mechanisms of storms but also with the identification of different types of storms, such as extratropical baroclinic storms, explosive cyclones, tropical storms, polar lows, medicanes, Vb-cyclones, and Australian east coast storms. Their significance is often through their physical impacts, in particular ocean waves and storm surges, which were and are associated with massive losses of lives, sometimes up to several hundred thousand people, and wealth. The perceptions of what storms constitute were different in different cultural contexts and times. In earlier days, higher forces were responsible for such storms, which they used to transfer messages to humans, physically based ideas have been forming since the 16th century. Another significant historical development was societies preparing to reduce their vulnerability to storms and to implement practices of insurance and risk management.
-
Abstract A global tropical cyclone precipitation dataset covering the period from January 1979 to February 2023 is presented. Global precipitation estimates were taken from the newly developed high-resolution Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) and TC tracks were obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset. This Global Multi-Source Tropical Cyclone Precipitation (MSTCP) dataset is comprised of two main products and files in the format of tables: the main and profile datasets. The main file provides various TCP statistics per TC track, including mean and maximum precipitation rates over a fixed and symmetrical radius of 500 km. The profile dataset comprises the azimuthally averaged precipitation every 10-km away from the center of each storm (until 500 km). The case study of Hurricane Harvey is used to show that MSWEP estimates agree well with another commonly used satellite product. The main statistics of the dataset are analyzed as well, including the differences in the dataset metrics for each of the six TC basins and for each Saffir-Simpson category for storm intensity.
-
Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO 2 exchange. We examine the main drivers of CO 2 fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO 2 fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO 2 fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO 2 outgassing, driven by CO 2 disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO 2 fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO 2 outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.
-
The 2023 wildfire season in Québec set records due to extreme warm and dry conditions, burning 4.5 million hectares and indicating persistent and escalating impacts associated with climate change. This study reviews the unusual weather conditions that led to the fires, discussing their extensive impacts on the forest sector, fire management, boreal caribou habitats, and particularly the profound effects on First Nation communities. The wildfires led to significant declines in forest productivity and timber supply, overwhelming fire management resources, and necessitating widespread evacuations. First Nation territories were dramatically altered, facing severe air quality issues and disruptions. While caribou impacts were modest across the province, the broader ecological, economical, and social repercussions were considerable. To mitigate future extreme wildfire seasons, the study suggests changes in forest management practices to increase forest resilience and resistance, adapting industrial structures to changes in wood type harvested, and enhancing fire suppression and risk management strategies. It calls for a comprehensive, unified approach to risk management that incorporates the lessons learned from the 2023 fire season and accounts for ongoing climate change. The studyunderscores the urgent need for detailed planning and proactive measures to reduce the growing risks and impacts of wildfires in a changing climate.
-
Abstract Several observational precipitation products that provide high temporal (≤3 h) and spatial (≤0.25°) resolution gridded estimates are available, although no single product can be assumed worldwide to be closest to the (unknown) “reality.” Here, we propose and apply a methodology to quantify the uncertainty of a set of precipitation products and to identify, at individual grid points, the products that are likely wrong (i.e., outliers). The methodology is applied over eastern North America for the 2015–2019 period for eight high‐resolution gridded precipitation products: CMORPH, ERA5, GSMaP, IMERG, MSWEP, PERSIANN, STAGE IV and TMPA. Four difference metrics are used to quantify discrepancies in different aspects of the precipitation time series, such as the total accumulation, two characteristics of the intensity‐frequency distribution, and the timing of precipitating events. Large regional and seasonal variations in the observational uncertainty are found across the ensemble. The observational uncertainty is higher in Canada than in the United States, reflecting large differences in the density of precipitation gauge measurements. In northern midlatitudes, the uncertainty is highest in winter, demonstrating the difficulties of satellite retrieval algorithms in identifying precipitation in snow‐covered areas. In southern midlatitudes, the uncertainty is highest in summer, probably due to the more discontinuous nature of precipitation. While the best product cannot be identified due to the lack of an absolute reference, our study is able to identify products that are likely wrong and that should be excluded depending on the specific application.
-
Abstract We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.
-
Abstract While the ERA5 reanalysis is commonly utilized in climate studies on extratropical cyclones (ETCs), only a few studies have quantified its ability in the representation of ETCs over land. To address this gap, this study evaluates ERA5's skill in representing the ETC‐associated 10‐m wind speed and the precipitation in central and eastern North America during 2005–2019. Hourly data collected from ~3000 stations, amounting to around 420 million reports stored in the Integrated Surface Database, is used as reference. For the spatial‐averaged ETC properties, ERA5 shows a good skill for wind speed with normalized mean bias (NMB) of −0.7% and normalized root‐mean‐square error (NRMSE) of 14.3%, despite a tendency to overestimate low winds and underestimate high winds. The ERA5 skill is worse for precipitation than for wind speed with NMB of −10.4% and NRMSE of 56.5% and a strong tendency to underestimate high values. For both variables, the best and worst performance is found in DJF and JJA, respectively. Negative biases are often identified over regions with stronger precipitation/wind speeds, and a systematic underestimation of wind speed is found over the Rockies with complex topography. Compared to the averaged ETCs, ERA5's performance deteriorates for the top 5% extreme ETCs with a stronger tendency to underestimate both wind speed and precipitation (NMB of −10.2% and −22.6%, respectively). Furthermore, ERA5's skill is worse for local extreme values within ETCs than for spatial averages. Our results highlight some important limitations of the ERA5 reanalysis products for studies looking at the possible impacts of ETCs.
-
Abstract. A fundamental issue associated with the dynamical downscaling technique using limited-area models is related to the presence of a “spatial spin-up” belt close to the lateral boundaries where small-scale features are only partially developed. Here, we introduce a method to identify the distance from the border that is affected by the spatial spin-up (i.e., the spatial spin-up distance) of the precipitation field in convection-permitting model (CPM) simulations. Using a domain over eastern North America, this new method is applied to several simulations that differ on the nesting approach (single or double nesting) and the 3-D variables used to drive the CPM simulation. Our findings highlight three key points. Firstly, when using a single nesting approach, the spin-up distance from lateral boundaries can extend up to 300 km (around 120 CPM grid points), varying across seasons, boundaries and driving variables. Secondly, the greatest spin-up distances occur in winter at the western and southern boundaries, likely due to strong atmospheric inflow during these seasons. Thirdly, employing a double nesting approach with a comprehensive set of microphysical variables to drive CPM simulations offers clear advantages. The computational gains from reducing spatial spin-up outweigh the costs associated with the more demanding intermediate simulation of the double nesting. These results have practical implications for optimizing CPM simulation configurations, encompassing domain selection and driving strategies.
-
Abstract Many studies have projected malaria risks with climate change scenarios by modelling one or two environmental variables and without the consideration of malaria control interventions. We aimed to predict the risk of malaria with climate change considering the influence of rainfall, humidity, temperatures, vegetation, and vector control interventions (indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN)). We used negative binomial models based on weekly malaria data from six facility-based surveillance sites in Uganda from 2010–2018, to estimate associations between malaria, environmental variables and interventions, accounting for the non-linearity of environmental variables. Associations were applied to future climate scenarios to predict malaria distribution using an ensemble of Regional Climate Models under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Predictions including interaction effects between environmental variables and interventions were also explored. The results showed upward trends in the annual malaria cases by 25% to 30% by 2050s in the absence of intervention but there was great variability in the predictions (historical vs RCP 4.5 medians [Min–Max]: 16,785 [9,902–74,382] vs 21,289 [11,796–70,606]). The combination of IRS and LLIN, IRS alone, and LLIN alone would contribute to reducing the malaria burden by 76%, 63% and 35% respectively. Similar conclusions were drawn from the predictions of the models with and without interactions between environmental factors and interventions, suggesting that the interactions have no added value for the predictions. The results highlight the need for maintaining vector control interventions for malaria prevention and control in the context of climate change given the potential public health and economic implications of increasing malaria in Uganda.
-
Abstract This study presents a firm‐specific methodology for extracting implied default intensities and recovery rates jointly from unit recovery claim prices—backed by out‐of‐the‐money put options—and credit default swap premiums, therefore providing time‐varying and market‐consistent views of credit risk at the individual level. We apply the procedure to about 400 firms spanning different sectors of the US economy between 2003 and 2019. The main determinants of default intensities and recovery rates are analyzed with statistical and machine learning methods linking default risk and credit losses to market, sector, and individual variables. Consistent with the literature, we find that individual volatility, leverage, and corporate bond market determinants are key factors explaining the implied default intensities and recovery rates. Then, we apply the framework in the context of credit risk management in applications, like, market‐consistent credit value‐at‐risk calculation and stress testing.
-
Abstract There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.
-
Abstract Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for example, land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model (the UQAM‐TCW model thereafter) that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global hazard maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers. , Plain Language Summary Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a difficult task. Being able to randomly simulate TCs and their features (such as wind speed) with mathematical models is therefore critical to build scenarios (and their corresponding probability) for land use planning and financial risk management. A common approach is to simulate TCs by tracking them directly in climate model outputs but this often underestimates the frequency of intense TCs while being computationally costly overall to generate a large number of events. For these reasons, many authors have looked into alternative approaches that replicate key physical features of TCs but rather using statistical models that are much less computationally demanding. This paper therefore presents a global TC model that leverages the strengths of both statistical and climate models to simulate a large number of TCs whose features are consistent with the physics and observations. As an important global phenomenon that affects TCs globally, we also integrate in our model the effects of El Niño. The paper focuses on the methodology and validation of each model component and concludes with global hazard maps for direct and indirect hits. , Key Points We present a global tropical cyclone (TC) wind model built upon a climate model large ensemble that can be used for risk analysis We integrate ENSO into our model since it is a strong driver of storm annual frequency, cyclogenesis, trajectories, and intensity We present global hazard maps consistent with statistical features of TC components and coherent with a global climate model
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive assessment of the physical science basis of climate change. It considers in situ and remote observations; paleoclimate information; understanding of climate drivers and physical, chemical, and biological processes and feedbacks; global and regional climate modelling; advances in methods of analyses; and insights from climate services. It assesses the current state of the climate; human influence on climate in all regions; future climate change including sea level rise; global warming effects including extremes; climate information for risk assessment and regional adaptation; limiting climate change by reaching net zero carbon dioxide emissions and reducing other greenhouse gas emissions; and benefits for air quality. The report serves policymakers, decision makers, stakeholders, and all interested parties with the latest policy-relevant information on climate change. Available as Open Access on Cambridge Core.