Rechercher
Bibliographie complète 167 ressources
-
Atmospheric deposition of nitrogen (N) and phosphorus (P) far exceeding the pre-industrial levels have the potential to change carbon (C) dynamics in northern peatlands. However, the responses of soil C concentration and organo-chemical composition to different rates and durations of nutrient enrichment are still unclear. Here, we compared the short- (3 years) and long-term (10 years) effects of N and P fertilizations on the physicochemical properties of peat and porewater in a bog-fen complex in northern China. Our results showed that the short-term fertilization increased Sphagnum moss cover, while the expansion of vascular plants was observed owing to the long-term fertilization. The preserved soil C did not vary considerably after the short- and long-term fertilizations. The harsh soil conditions may impede the decomposition of organic matters by soil microorganisms during the short-term fertilization. For the long-term fertilization, the input of high-phenolic litters owing to vascular plant expansion likely exerted an important control on soil C dynamics. These processes constrained the variation in soil C concentrations when the addition rate and cumulative amount of external N and P increased, which will advance our understanding and prediction of the resilience of soil C storage to imbalanced nutrient enrichment of N and P in northern peatlands.
-
Abstract Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03–0.08] to RR = 0.35, CI95% [0.28–0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
-
Many hypotheses have been proposed to explain elevational species richness patterns; however, evaluating their importance remains a challenge, as mountains that are nested within different biogeographic regions have different environmental attributes. Here, we conducted a comparative study for trees, shrubs, herbs, and ferns along the same elevational gradient for 22 mountains worldwide, examining the performance of hypotheses of energy, tolerance, climatic variability, and spatial area to explain the elevational species richness patterns for each plant group. Results show that for trees and shrubs, energy-related factors exhibit greater explanatory power than other factors, whereas the factors that are associated with climatic variability performed better in explaining the elevational species richness patterns of herbs and ferns. For colder mountains, energy-related factors emerged as the main drivers of woody species diversity, whereas in hotter and wetter ecosystems, temperature and precipitation were the most important predictors of species richness along elevational gradients. For herbs and ferns, the variation in species richness was less than that of woody species. These findings provide important evidence concerning the generality of the energy theory for explaining the elevational species richness pattern of plants, highlighting that the underlying mechanisms may change among different growth form groups and regions within which mountains are nested.
-
Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.
-
Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5.
-
Abstract. Canada's RADARSAT missions improve the potential to study past flood events; however, existing tools to derive flood depths from this remote-sensing data do not correct for errors, leading to poor estimates. To provide more accurate gridded depth estimates of historical flooding, a new tool is proposed that integrates Height Above Nearest Drainage and Cost Allocation algorithms. This tool is tested against two trusted, hydraulically derived, gridded depths of recent floods in Canada. This validation shows the proposed tool outperforms existing tools and can provide more accurate estimates from minimal data without the need for complex physics-based models or expert judgement. With improvements in remote-sensing data, the tool proposed here can provide flood researchers and emergency managers accurate depths in near-real time.
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Polar clouds are, as a consequence of the paucity of in situ observations, poorly understood compared to their lower latitude analogs, yet highly climate-sensitive through thermal radiation emission. The prevalence of Thin Ice Clouds (TIC) dominates in cold Polar Regions and the Upper Troposphere Lower Stratosphere (UTLS) altitudes. They can be grouped into 2 broad categories. The first thin ice cloud type (TIC1) is made up of high concentrations of small, non-precipitating ice crystals. The second type (TIC2) is composed of relatively small concentrations of larger, precipitating ice crystals. In this study, we investigate the ability of a developmental version of the Canadian Regional Climate Model (CRCM6) in simulating cold polar-night clouds over the Arctic Ocean, a remote region that is critical to atmospheric circulation reaching out to the mid-latitudes. The results show that, relative to CloudSat-CALIPSO vertical profile products, CRCM6 simulates high-latitude and low spatial frequency variations of Ice Water Content (IWC), effective radius (re) and cooling rates reasonably well with only small to moderate wet and dry biases. The model can also simulate cloud type, location, and temporal occurrence effectively. As well, it successfully simulated higher altitude TIC1 clouds whose small size evaded CloudSat detection while being visible to CALIPSO.
-
Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m 2 /yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.
-
The NAEC catalogue comprises information on extratropical cyclone (ETC) tracks in North America (20–80 N and 180-0W) from January 1979 to December 2020. The source data used to produce this dataset is obtained from the ECMWF ERA5 reanalysis at 1-hour spatial resolution and 0.25x0.25 degree spatial resolution. In addition to the location, time, and intensity, this dataset also includes ETC-associated impact variables such as the near-surface wind speed, wind gust, and precipitation, averaged using different radii around the ETC center. Both absolute and relative (to the local climatology) measures are provided. This catalogue provides useful information for the assessment of ETC-induced impacts over North America.
-
Abstract Declining sea ice is expected to change the Arctic's physical and biological systems in ways that are difficult to predict. This study used stable isotope compositions (δ 13 C and δ 15 N) of archaeological, historic, and modern Pacific walrus ( Odobenus rosmarus divergens ) bone collagen to investigate the impacts of changing sea ice conditions on walrus diet during the last ~4000 yr. An index of past sea ice conditions was generated using dinocyst-based reconstructions from three locations in the northeastern Chukchi Sea. Archaeological walrus samples were assigned to intervals of high and low sea ice, and δ 13 C and δ 15 N were compared across ice states. Mean δ 13 C and δ 15 N values were similar for archaeological walruses from intervals of high and low sea ice; however, variability among walruses was greater during low-ice intervals, possibly indicating decreased availability of preferred prey. Overall, sea ice conditions were not a primary driver of changes in walrus diet. The diet of modern walruses was not consistent with archaeological low sea ice intervals. Rather, the low average trophic position of modern walruses (primarily driven by males), with little variability among individuals, suggests that trophic changes to this Arctic ecosystem are still underway or are unprecedented in the last ~4000 yr.
-
The NA-ISD2ERA is a station-based gridded dataset of hourly 10-m wind speed, surface total precipitation, sea-level pressure, and 2-m air and dew point temperature observations interpolated on the regular 0.25° latitude-longitude ERA5 grid over North America for the 1990-2021 period. Station observations are from the Integrated Surface Database (ISD) developed by the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) (Smith et al. 2011). It includes over 35,000 weather stations around the world of hourly to sub-hourly in situ observations for numerous variables such as wind speed, precipitation, sea-level pressure, air and dew point temperature. The NCEI ISD dataset is available at https://www.ncei.noaa.gov. ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Hersbach et al., 2020). Quality checks implemented in ISD are used to select reliable observations. For each ERA5 grid cell and at each hour, the data are interpolated by taking the nearest available ISD observation to the grid cell center that is located within the targeted grid cell.
-
Abstract Reconstructions of ocean primary productivity (PP) help to explain past and present biogeochemical cycles and climate changes in the oceans. We document PP variations over the last 50 kyr in a currently oligotrophic subtropical region, the Gulf of Cadiz. Data combine refined results from previous investigations on dinocyst assemblages, alkenones, and stable isotopes ( 18 O, 13 C) in planktonic ( Globigerina bulloides ) and endobenthic ( Uvigerina mediterranea ) foraminifera from cores MD04‐2805 CQ and MD99‐2339, with new isotopic measurements on epibenthic ( Cibicides pachyderma ‐ Cibicidoides wuellerstorfi ) foraminifera and dinocyst‐based estimates of PP using the new n = 1,968 modern database. We constrain PP variations and export production by integrating qualitative information from bioindicators with dinocyst‐based quantitative reconstructions such as PP and seasonal sea surface temperature and information about remineralization from the benthic Δδ 13 C (difference between epibenthic and endobenthic foraminiferal δ 13 C signatures). This study also includes new information on alkenone‐based SST and total organic carbon which provides insights into the relationship between past regional hydrological activity and PP regime change. We show that PP, carbon export, and remineralization were generally high in the NE subtropical Atlantic Ocean during the last glacial period and that the Last Glacial Maximum (LGM) had lower Δδ 13 C than the Heinrich Stadials with sustained high PP, likely allowing enhanced carbon sequestration. We link these PP periods to the dynamics of upwelling, active almost year‐round during sadials, but restricted to spring‐summer during interstadials and LGM, like today. During interstadials, nutrient advection through freshwater inputs during autumn‐winter needs also to be considered to fully understand PP regimes. , Key Points Productivity (PP) in the Gulf of Cadiz is dependent on the seasonality control for both upwelling and nutrient‐enriched freshwater inputs We show generally high PP, carbon export, and remineralization during the last glacial period at the study site The Last Glacial Maximum had lower Δδ 13 C than the Heinrich Stadials with sustained high PP likely allowing enhanced carbon sequestration
-
Abstract Climate changes over the past two millennia in the central part of the Gulf of St. Lawrence are documented in this paper with the aim of determining and understanding the natural climate variability and the impact of anthropogenic forcing at a regional scale. The palynological content (dinocysts, pollen, and spores) of the composite marine sediment core MSM46-03 collected in the Laurentian Channel was used to reconstruct oceanographic and climatic changes with a multidecadal temporal resolution. Sea-surface conditions, including summer salinity and temperature, sea-ice cover, and primary productivity, were reconstructed from dinocyst assemblages. Results revealed a remarkable cooling trend of about 4°C after 1230 cal yr BP (720 CE) and a culmination with a cold pulse dated to 170–40 cal yr BP (1780–1910 CE), which likely corresponds to the regional signal of the Little Ice Age. This cold interval was followed by a rapid warming of about 3°C. In the pollen assemblages, the decrease of Pinus abundance over the past 1700 yr suggests changes in wind regimes, likely resulting from increased southerly incursions of cold and dry Arctic air masses into southeastern Canada.
-
Abstract The importance of resolving mesoscale air‐sea interactions to represent cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs), is investigated using the Australian Regional Coupled Model based on NEMO‐OASIS‐WRF (NOW) at resolution. The fully coupled model is shown to be capable of reproducing correctly relevant features such as the seasonality, spatial distribution and intensity of ECLs while it partially resolves mesoscale processes, such as air‐sea feedbacks over ocean eddies and fronts. The mesoscale thermal feedback (TFB) and the current feedback (CFB) are shown to influence the intensity of northern ECLs (north of ), with the TFB modulating the pre‐storm sea surface temperature (SST) by shifting ECL locations eastwards and the CFB modulating the wind stress. By fully uncoupling the atmospheric model of NOW, the intensity of northern ECLs is increased due to the absence of the cold wake that provides a negative feedback to the cyclone. The number of ECLs might also be affected by the air‐sea feedbacks but large interannual variability hampers significant results with short‐term simulations. The TFB and CFB modify the climatology of SST (mean and variability) but no direct link is found between these changes and those noticed in ECL properties. These results show that the representation of ECLs, mainly north of , depend on how air‐sea feedbacks are simulated. This is particularly important for atmospheric downscaling of climate projections as small‐scale SST interactions and the effects of ocean currents are not accounted for. , Plain Language Summary Air‐sea interactions occur at a variety of spatial scales, including those of the size of ocean eddies. Such interactions are partially resolved in the Australian Regional Coupled Model used to simulate the cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs). The effect of different feedbacks between the ocean and the atmosphere, including those due to mechanical and thermal exchanges over ocean eddies, are tested on the properties of ECLs. Significant effects are found on the intensity of ECLs north of , with also potential effects on the number of ECLs. The air‐sea feedbacks modify the climatology of sea surface temperature, with no direct link to ECL changes. Such experiments eventually demonstrate that small‐scale air‐sea feedbacks may matter for representing current Australian climate and its change in the future. , Key Points High‐resolution regional coupled modeling can simulate key features of East Australian cyclones Cyclone intensity is sensitive to mechanical and thermal air‐sea feedbacks at mesoscales Coupled and atmosphere‐only models mainly differ in simulating cyclone properties north of