Rechercher
Bibliographie complète 905 ressources
-
Abstract. The amount and the phase of cold-season precipitation accumulating in the upper Saint John River (SJR) basin are critical factors in determining spring runoff, ice jams, and flooding. To study the impact of winter and spring storms on the snowpack in the upper SJR basin, the Saint John River Experiment on Cold Season Storms (SAJESS) was conducted during winter–spring 2020–2021. Here, we provide an overview of the SAJESS study area, field campaign, and data collected. The upper SJR basin represents 41 % of the entire SJR watershed and encompasses parts of the US state of Maine and the Canadian provinces of Quebec and New Brunswick. In early December 2020, meteorological instruments were co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick. This included a separate weather station for measuring standard meteorological variables, an optical disdrometer, and a micro rain radar. This instrumentation was augmented during an intensive observation period that also included upper-air soundings, surface weather observations, a multi-angle snowflake camera, and macrophotography of solid hydrometeors throughout March and April 2021. During the study, the region experienced a lower-than-average snowpack that peaked at ∼ 65 cm, with a total of 287 mm of precipitation (liquid-equivalent) falling between December 2020 and April 2021, a 21 % lower amount of precipitation than the climatological normal. Observers were present for 13 storms during which they conducted 183 h of precipitation observations and took more than 4000 images of hydrometeors. The inclusion of local volunteers and schools provided an additional 1700 measurements of precipitation amounts across the area. The resulting datasets are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2023). We also include a synopsis of the data management plan and a brief assessment of the rewards and challenges of conducting the field campaign and utilizing community volunteers for citizen science.
-
Abstract. In this review, we assess scientific evidence for tipping points in ocean and atmosphere circulations. The warming of oceans, modified wind patterns and increasing freshwater influx from melting ice hold the potential to disrupt established circulation patterns. The literature provides evidence for oceanic tipping points in the Atlantic Meridional Overturning Circulation (AMOC), the North Atlantic Subpolar Gyre (SPG), and the Antarctic Overturning Circulation, which may collapse under warmer and ‘fresher’ (i.e. less salty) conditions. A slowdown or collapse of these oceanic circulations would have far-reaching consequences for the rest of the climate system and could lead to strong impacts on human societies and the biosphere. Among the atmospheric circulation systems considered, we classify the West African monsoon as a tipping system. Its abrupt changes in the past have led to vastly different vegetation states of the Sahara (e.g. “green Sahara” states). Evidence about tipping of the monsoon systems over South America and Asia is limited however, there are multiple potential sources of destabilisation, including large-scale deforestation, air pollution, and shifts in other circulation patterns (in particular the AMOC). Although theoretically possible, there is currently little indication for tipping points in tropical clouds or mid-latitude atmospheric circulations. Similarly, tipping towards a more extreme or persistent state of the El Niño-Southern Oscillation (ENSO) is currently not fully supported by models and observations. While the tipping thresholds for many of these systems are uncertain, tipping could have severe socio-environmental consequences. Stabilising Earth’s climate (along with minimising other environmental pressures, like aerosol pollution and ecosystem degradation) is critical for reducing the likelihood of reaching tipping points in the ocean-atmosphere system.
-
Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.
-
Abstract Northeast Brazil and Western Africa are two regions geographically separated by the Atlantic Ocean, both home to vulnerable populations living in semi-arid areas. Atlantic Ocean modes of variability and their interactions with the atmosphere are the main drivers of decadal precipitation in these Atlantic Ocean coastal areas. How these low-frequency modes of variability evolve and interact with each other is key to understanding and predicting decadal precipitation. Here we use the Self-Organizing Maps neural network with different variables to unravel causality between the Atlantic modes of variability and their interactions with the atmosphere. Our study finds an 82% (p<0.05) anti-correlation between decadal rainfall in Northeast Brazil and Western Africa from 1979 to 2005. We also find three multi-decadal cycles: 1870-1920, 1920-1970, and 1970-2019 (satellite era), pointing to a 50-year periodicity governing the sea surface temperature anomalies of Tropical and South Atlantic. Our results demonstrate how Northeast Brazil and Western Africa rainfall anti-correlation was formed in the satellite era and how it might be part of a 50-year cycle from the Tropical and South Atlantic decadal variability.
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
Abstract The winter and summer monsoons in Southeast Asia are important but highly variable sources of rainfall. Current understanding of the winter monsoon is limited by conflicting proxy observations, resulting from the decoupling of regional atmospheric circulation patterns and local rainfall dynamics. These signals are difficult to decipher in paleoclimate reconstructions. Here, we present a winter monsoon speleothem record from Southeast Asia covering the Holocene and find that winter and summer rainfall changed synchronously, forced by changes in the Pacific and Indian Oceans. In contrast, regional atmospheric circulation shows an inverse relation between winter and summer controlled by seasonal insolation over the Northern Hemisphere. We show that disentangling the local and regional signal in paleoclimate reconstructions is crucial in understanding and projecting winter and summer monsoon variability in Southeast Asia.
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.
-
Abstract Cold‐season methane (CH 4 ) emissions may be poorly constrained in wetland models. We examined cold‐season CH 4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH 4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH 4 yr −1 . While summer CH 4 emissions were well simulated compared to in‐situ flux measurement observations, the models underestimated CH 4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold‐season emissions was simulated to increase at 0.4 ± 0.8% decade −1 . Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement. , Plain Language Summary Wetlands in the northern high latitudes are a major source of methane (CH 4 ) to the atmosphere, mainly during the warm season. Previously, models have assumed that cold‐season CH 4 emissions are low, but recent observations suggest high‐latitude wetlands can be substantial sources even in winter. We compared CH 4 emissions simulated by 16 state‐of‐the‐art wetland models, participating in a model intercomparison project with a focus on the cold‐season in northern wetlands. The model simulations indicated that nearly one third of annual emissions were simulated to occur from September to May, and CH 4 emissions to the atmosphere were not negligible even under freezing air temperatures, although the results differed greatly among the models. However, field studies suggest cold‐season emissions account for an even larger fraction of annual emissions. These results highlight the contribution of cold‐season emissions to the annual CH 4 budget, which future climatic warming is expected to affect severely, and they also show that simulations of cold‐season CH 4 emissions from wetlands need to be improved. , Key Points Cold‐season methane (CH 4 ) emissions simulated by 16 Global Carbon Project‐CH 4 wetland models were analyzed Most models underestimate the cold‐season emissions in comparison with observational data Further model improvement by including cold‐season processes is required to reduce the model bias and uncertainty
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive assessment of the physical science basis of climate change. It considers in situ and remote observations; paleoclimate information; understanding of climate drivers and physical, chemical, and biological processes and feedbacks; global and regional climate modelling; advances in methods of analyses; and insights from climate services. It assesses the current state of the climate; human influence on climate in all regions; future climate change including sea level rise; global warming effects including extremes; climate information for risk assessment and regional adaptation; limiting climate change by reaching net zero carbon dioxide emissions and reducing other greenhouse gas emissions; and benefits for air quality. The report serves policymakers, decision makers, stakeholders, and all interested parties with the latest policy-relevant information on climate change. Available as Open Access on Cambridge Core.
-
Abstract. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. This alternative approach is designed by combining asynchronous hydroclimatic modelling and quantile perturbation applied to streamflow observations. Calibration is run by forcing hydrologic models with raw climate model outputs using an objective function that excludes the day-to-day temporal correlation between simulated and observed hydrographs. The resulting hydrologic scenarios provide useful and reliable information considering that they (1) preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascade despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four sub-catchments of the Chaudière River, Canada, using nine North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) simulations and a pool of lumped conceptual hydrologic models. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. They also highlight the sensibility of the proposed workflow to strong biases affecting raw climate model outputs, frequently causing outlying projections of the hydrologic regime. Inappropriate forcing climate simulations were however successfully identified (and excluded) using the performance of the simulated hydrologic response as a ranking criterion. Results finally suggest that further works should be conducted to confirm the reliability of the proposed workflow to assess the impact of climate change on high- and low-flow events.
-
Abstract Proxy reconstructions from the mid‐Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally‐driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally‐driven changes over both regions, and leads to an improvement in proxy‐model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modeling global climate. , Plain Language Summary Paleoclimate modeling offers a way to test the ability of climate models to detect climate change outside the envelope of historical climatic variability. The mid‐Holocene (MH: 6,000 years ago) is a key interval for paleoclimate studies, as the Northern Hemisphere received greater summer‐time insolation and experienced stronger monsoons than today. Due to a stronger MH West African Monsoon, the Saharan region received enough rainfall to be able to host vegetation. The vegetation changes in the Sahara affected not only the local climate but also far‐afield locations through teleconnections in the global climate system. In this study, we simulate the MH climate using four climate models, each with two types of simulations—with and without the Green Sahara. We show that simulations with the Green Sahara capture greater drying over the South American continent than the simulations which only account for changes in orbital forcing and greenhouse gas concentrations. The simulations with the Green Sahara are more in line with proxy reconstructions, lending further support to incorporating vegetation changes as a necessary boundary condition to simulate the MH climate realistically. , Key Points We simulate the mid‐Holocene with and without the Green Sahara using four fully coupled global climate models The mid‐Holocene simulation with the Green Sahara shows intensification of orbitally‐driven changes in precipitation over northern Africa and South America Incorporation of the Green Sahara leads to greater proxy‐model agreement over both northern Africa and South America