Rechercher
Bibliographie complète 888 ressources
-
Abstract Stratospheric volcanic aerosol can have major impacts on global climate. Despite a consensus among studies on an El Niño‐like response in the first or second post‐eruption year, the mechanisms that trigger a change in the state of El Niño‐Southern Oscillation (ENSO) following volcanic eruptions are still debated. Here, we shed light on the processes that govern the ENSO response to tropical volcanic eruptions through a series of sensitivity experiments with an Earth System Model where a uniform stratospheric volcanic aerosol loading is imposed over different parts of the tropics. Three tropical mechanisms are tested: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). We find that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as La Niña‐like rather than El‐Niño‐like conditions develop following a uniform radiative forcing over the equatorial Pacific. , Plain Language Summary Volcanic eruptions emit large quantity of sulfate aerosol up to the stratosphere. Such aerosol can alter global climate by interacting with solar radiation and in turn modifying atmospheric and ocean circulation. In particular, volcanic aerosol can alter the state of the El Niño‐Southern Oscillation (ENSO), the major mode of tropical climate variability. However, the mechanisms that trigger a change in the ENSO state following volcanic eruptions are still debated. In this study, we use an Earth System Model to revisit the main mechanisms that have been proposed to alter ENSO, causing positive temperature anomalies over the equatorial Pacific (EqPAC) Ocean. We tested three mechanisms: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). Our experiments show that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as cold rather than warm develop over the EqPAC Ocean following the applied volcanic forcing. , Key Points Radiative cooling by volcanic aerosol over the tropical northern Africa triggers El Niño‐like conditions via atmospheric circulation changes The “ocean thermostat mechanism” is absent in our simulations when a uniform aerosol forcing is applied over the equatorial Pacific (EqPAC) The Maritime Continent cooling mechanism is not at play when the aerosol forcing extends over the entire EqPAC
-
Soil microorganisms are critical biological indicators for evaluating soil health and play a vital role in carbon (C)-climate feedback. In recent years, the accuracy of models in terms of predicting soil C pools has been improved by considering the involvement of microbes in the decomposition process in ecosystem models, but the parameter values of these models have been assumed by researchers without combining observed data with the models and without calibrating the microbial decomposition models. Here, we conducted an observational experiment from April 2021 to July 2022 in the Ziwuling Mountains, Loess Plateau, China, to explore the main influencing factors of soil respiration (R S ) and determine which parameters can be incorporated into microbial decomposition models. The results showed that the R S rate is significantly correlated with soil temperature (T S ) and moisture (M S ), indicating that T S increases soil C loss. We attributed the non-significant correlation between R S and soil microbial biomass carbon (MBC) to variations in microbial use efficiency, which mitigated ecosystem C loss by reducing the ability of microorganisms to decompose organic resources at high temperatures. The structural equation modeling (SEM) results demonstrated that T S , microbial biomass, and enzyme activity are crucial factors affecting soil microbial activity. Our study revealed the relations between T S , microbial biomass, enzyme activity, and R S , which had important scientific implications for constructing microbial decomposition models that predict soil microbial activity under climate change in the future. To better understand the relationship between soil dynamics and C emissions, it will be necessary to incorporate climate data as well as R S and microbial parameters into microbial decomposition models, which will be important for soil conservation and reducing soil C loss in the Loess Plateau.
-
Variations in sea surface conditions and sea level through the Holocene in the Kandalaksha Bay, the White Sea, were reconstructed based on the study of core sediments from the outer Kandalaksha Bay, using the modern analog technique applied to dinocysts in addition to diatoms, TOC, δ13Corg, CaCO3, and grain size data. The chronostratigraphy of the core sediments was defined from accelerator mass spectrometry 14C dates on mollusk shells. The results indicated an increase in water depth in the outer Kandalaksha Bay and in the central Dvina Bay until the late Holocene. From about 9.5 to 7.5 cal kyr BP, the data suggested a general trend of increasing sea surface temperatures (up to 14 °C), at least in areas with inflow of Atlantic waters. The last 2.5 kyr were characterized by increased freshwater runoff to the White Sea.
-
Although the finance literature has devoted a lot of research into the development of advanced models for improving the pricing and hedging performance, there has been much less emphasis on approaches to measure dynamic hedging effectiveness. This article discusses a statistical framework based on regression analysis to measure the effectiveness of dynamic hedges for long-term investment guarantees. The importance of taking model risk into account is emphasized. The difficulties in reducing hedging risk to an appropriately low level lead us to propose a new perspective on hedging, and recognize it as a tool to modify the risk–reward relationship of the unhedged position.
-
Meteorological data, manual observations, and photographic images of hydrometeors recorded during the Saint John River Experiment on Cold Season Storms. The dataset covers the period December 2020 to April 2021, with an intensive observation period from March 2021 to April 2021.
-
Flood-related losses are on the rise in Canada and private insurance remains costly or unavailable in high-risk areas. Despite the introduction of overland flood insurance in 2015, following the federal government’s invitation to the insurance industry to participate in flood risk-sharing, federal and provincial disaster financial assistance programs still cover a large portion of these costs. As the risks increase, governments are questioning the sustainability of using taxpayers’ money to finance such losses, leaving municipalities with significant residual risk. The growing number of people and assets occupying flood-prone areas, including public infrastructure, has contributed to the sharp increase in flood damage costs. Based on a literature review and discussions with experts, this paper describes the municipal role in flood-risk management, and shows how provincial and federal financial assistance to municipalities for flood damage in British Columbia and Québec may be counterproductive in fostering flood-risk management at the municipal level. We conclude that municipalities can play a more proactive role in incorporating risk reduction as the key objective of disaster financial assistance and propose three specific policy instruments to help reduce the growing number of people living in flood zones: flood mapping, land-use planning, and the relocation of high-risk properties.
-
ABSTRACT Over the past century, an increase in temperatures and a decrease in dissolved oxygen concentrations have been observed in the bottom waters of the Laurentian Channel (LC), throughout the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL), eastern Canada. To document the impact of these changes, we analyzed the benthic foraminiferal assemblages and geochemical signatures of four sediment cores taken in the LC. Radiometric measurements (210Pb, 226Ra, 137Cs) indicate that the studied cores encompass the last 50 years of sedimentation in the LSLE and the last ∼160 years in the GSL. The sedimentary record shows a 60 to 65% decrease in benthic foraminiferal taxonomic diversity in the LC since the 1960s. An accelerated change in the foraminiferal assemblages is observed at approximately the same time at all studied sites, around the late 1990s and the early 2000s, towards populations dominated by the hypoxia-tolerant indicator taxa Brizalina subaenariensis, Eubuliminella exilis, and Globobulimina auriculata. This evolution of assemblages reflects incursions of the hypoxic zone into the western GSL over the last decades. The results of our multivariate analyses highlight the potential of benthic foraminiferal assemblages as a proxy of bottom-water hypoxia.
-
ABSTRACT Microfaunal assemblages of benthic foraminifera, ostracods, and tintinnids from two marine sediment cores retrieved from the Herschel Basin of the Canadian Beaufort Sea shelf document relationships with environmental parameters such as salinity, sea-ice cover, and turbulence. Cores YC18-HB-GC01 and PG2303-1 were collected at 18 and 32 m water depth, respectively. At these sites, sediment accumulation rates range between 0.6 and 1.7 cm yr–1 allowing a near-annual temporal resolution over the last 50 years. Multivariate analyses indicate that benthic foraminiferal assemblages respond primarily to food supply. Dissimilarities between the microfaunal assemblages of the two cores are mainly the result of bottom water salinity levels linked to water depth. High abundance of the benthic foraminiferal species Elphidium clavatum and occurrences of Elphidium bartletti point to varying, but relatively low, salinities at the shallow core site YC18-HB-GC01, which may be affected by variations in the summer halocline depth. Higher species diversity and more abundant Cassidulina reniforme and Stainforthia feylingi characterize the deeper core PG2303-1, which might reflect more stable conditions and higher bottom-water salinities throughout the studied time interval. The most important microfaunal shift of the last 50 years, observed in the shallower longer core YC18-HB-GC01, occurred at the turn of the 21st century. Prior to ∼2000 CE, the presence of Islandiella norcrossi indicates more stable and saline conditions. Since ∼2000 CE, increased abundances of Haynesina nivea and of the ciliate Tintinnopsis fimbriata suggest decreased salinity and increased turbidity. An increased abundance of Eoeponidella pulchella after ∼2000 CE suggests a concurrent increase in productivity in the last two decades. This shift is nearly synchronous with a decrease in mean summer sea-ice concentration, which can play an important role in bottom water stability on the shelf. Easterly winds can induce a reduction in the sea-ice cover, but also foster a westward spreading of the Mackenzie River plume and the upwelling of nutrient-rich Pacific waters onto the shelf. Both factors would explain the increased freshening and productivity of the Herschel Basin. The last two decades were also marked by a decrease in ostracod abundance that may relate to higher water turbidity. This study shows that combining information from benthic foraminifera, ostracods, and tintinnids provides a comprehensive insight into recent hydrographic/climatic changes in nearshore Arctic habitats, where productivity is critical for the food security of local communities.
-
Tropical cyclones (TCs) regularly form in association with the intertropical convergence zone (ITCZ), and thus, its positioning has implications for global TC activity. While the poleward extent of the ITCZ has varied markedly over past centuries, the sensitivity with which TCs responded remains poorly understood from the proxy record, particularly in the Southern Hemisphere. Here, we present a high-resolution, composite stalagmite record of ITCZ migrations over tropical Australia for the past 1500 years. When integrated with a TC reconstruction from the Australian subtropics, this time series, along with downscaled climate model simulations, provides an unprecedented examination of the dependence of subtropical TC activity on meridional shifts in the ITCZ. TCs tracked the ITCZ at multidecadal to centennial scales, with a more southward position enhancing TC-derived rainfall in the subtropics. TCs may play an increasingly important role in Western Australia’s moisture budgets as subtropical aridity increases due to anthropogenic warming. , Stalagmites and climate models reveal ITCZ shifts drove concurrent changes in Australian tropical cyclone and monsoon rainfall.
-
Palynological and sedimentological analyses were performed on the sediment core HH16‐1205‐GC retrieved from the central Isfjorden, West Spitsbergen. The sequence, which spans the last 7000 years, revealed an overall cooling trend with an important climate shift between 4.4 and 3.8 cal. ka BP, in addition to millennial‐scale oscillations. Sea‐surface reconstruction from dinocyst assemblages indicates a decrease in summer sea‐surface temperature, from 2.5 to 1.5 °C, and primary productivity, from 750 to 650 gC m −2 a −1 over the last 7000 years. From around 6.8 to 5.8 cal. ka BP, the sedimentological and palynological data suggest a predominant sediment supply from the inner part of the fjord, ice rafting, dense sea ice cover, strongly stratified water masses and high primary productivity. The interval from 4.4 to 3.8 cal. ka BP is marked by a layer of coarser material and a significant decrease in the grain‐size mode. Our geochemical data show large‐amplitude fluctuations after 2.0 cal. ka BP, while an increase in the dinocysts Impagidinium pallidum and Spiniferites elongatus from 2.0 to 1.2 cal. ka BP suggests enhanced Atlantic Water inflow. The dinocyst‐based reconstructions also reveal large‐amplitude millennial fluctuations in sea ice cover, summer sea‐surface temperature and salinity. Wavelet analysis and cross‐wavelet analysis on K/Ti ratio coupled with sea‐ice estimates confirm a strong signal with a periodicity of 1200–1500 years.
-
Abstract The recent rise in atmospheric methane (CH 4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH 4 source, estimates of global wetland CH 4 emissions vary widely among approaches taken by bottom‐up (BU) process‐based biogeochemical models and top‐down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi‐model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH 4 emission estimates and model performance. We find that using better‐performing models identified by observational constraints reduces the spread of wetland CH 4 emission estimates by 62% and 39% for BU‐ and TD‐based approaches, respectively. However, global BU and TD CH 4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH 4 year −1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter‐site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH 4 models to move beyond static benchmarking and focus on evaluating site‐specific and ecosystem‐specific variabilities inferred from observations.
-
The UQAM Heatwave ERA5 Archive and Temperatures (U-HEAT) catalog is a global dataset of temperature and heatwave data spanning 1940 to 2022. The temperature data features the maximum daily 2-m temperature, the 90th percentile of the maximum daily 2-m temperature, and an indication as to whether a given location (grid point) is experiencing a heatwave or not on a given day. The heatwave data includes metrics such as the duration, the cumulated intensity and the maximum intensity of heatwaves occuring in the study period as well as their location (grid point) and start date. Both the temperature and the heatwave metrics data were calculated from the ERA5 data produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). More information on the catalog can be found in the documentation and the README files. Le catalogue UQAM Heatwave ERA5 Archive and Temperatures (U-HEAT) est un jeu de données global de température et de vague de chaleur pour la période entre 1940 et 2022. Les données de température comprennent le maximum quotidien de la température à 2m, le 90e percentile du maximum quotidien de la température à 2m et une indication permettant de savoir si un lieu donné (point de grille) subit ou non une vague de chaleur pour un jour donné. Les données de vague de chaleur incluent des métriques comme la durée, l'intensité cumulée et l'intensité maximale de vagues de chaleur qui se sont produites durant la période d'étude en plus de leur emplacement (point de grille) et leur date de début. Les données de température et de vague de chaleur ont été calculées à partir du jeu de données ERA5 produit par le European Centre for Medium-Range Weather Forecasts (ECMWF). Le fichier de documentation et le fichier README peuvent être consultés pour obtenir plus d'information à propos du catalogue.
-
Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2 year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.
-
Abstract Increased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH 4 by methanotrophs within the soil) of the atmospheric CH 4 in terrestrial ecosystems. In the global CH 4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH 4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH 4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH 4 uptake and wetland soil CH 4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH 4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH 4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH 4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH 4 yr −1 as an additional CH 4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 fluxes and thus contributes to a positive feedback spiral. , Plain Language Summary This study is the first investigation to include scenarios of CH 4 sink–source transition due to climate change and provides the global estimate of soil CH 4 budgets in natural terrestrial ecosystems in the context of climate change. The enhanced effect of climate change on CH 4 emissions was mainly attributed to increased CH 4 emissions from natural upland ecosystems. Although an increased CH 4 uptake by forest and grassland soils caused by increased temperature and decreased precipitation can offset some part of additional CH 4 sources, the substantial increase of increased precipitation on CH 4 emissions makes these sinks insignificant. These findings highlight that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 emissions and thus form a positive feedback spiral between methane emissions and climate change. , Key Points This study is the first CH 4 budget investigation to include CH 4 sink‐source transition due to climate change Climate change is estimated to add 22.8 ± 3.6 Tg CH 4 yr −1 emission by 2100 under the high socioeconomic pathway Climate change weakens the buffering capacity of upland soils to CH 4 emissions