UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Smooth Spatial Modeling of Extreme Mediterranean Precipitation
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Smooth Spatial Modeling of Extreme Mediterranean Precipitation

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Hammami, Hela (Auteur)
  • Carreau, Julie (Auteur)
  • Neppel, Luc (Auteur)
  • Elasmi, Sadok (Auteur)
  • Feki, Haifa (Auteur)
Titre
Smooth Spatial Modeling of Extreme Mediterranean Precipitation
Résumé
Extreme precipitation events can lead to disastrous floods, which are the most significant natural hazards in the Mediterranean regions. Therefore, a proper characterization of these events is crucial. Extreme events defined as annual maxima can be modeled with the generalized extreme value (GEV) distribution. Owing to spatial heterogeneity, the distribution of extremes is non-stationary in space. To take non-stationarity into account, the parameters of the GEV distribution can be viewed as functions of covariates that convey spatial information. Such functions may be implemented as a generalized linear model (GLM) or with a more flexible non-parametric non-linear model such as an artificial neural network (ANN). In this work, we evaluate several statistical models that combine the GEV distribution with a GLM or with an ANN for a spatial interpolation of the GEV parameters. Key issues are the proper selection of the complexity level of the ANN (i.e., the number of hidden units) and the proper selection of spatial covariates. Three sites are included in our study: a region in the French Mediterranean, the Cap Bon area in northeast Tunisia, and the Merguellil catchment in central Tunisia. The comparative analysis aim at assessing the genericity of state-of-the-art approaches to interpolate the distribution of extreme precipitation events.
Publication
Water
Volume
14
Numéro
22
Date
2022/1
Langue
en
DOI
10.3390/w14223782
ISSN
2073-4441
URL
https://www.mdpi.com/2073-4441/14/22/3782
Consulté le
2023-11-22 15 h 35
Catalogue de bibl.
www.mdpi.com
Autorisations
http://creativecommons.org/licenses/by/3.0/
Extra
Number: 22 Publisher: Multidisciplinary Digital Publishing Institute
Référence
Hammami, H., Carreau, J., Neppel, L., Elasmi, S., & Feki, H. (2022). Smooth Spatial Modeling of Extreme Mediterranean Precipitation. Water, 14(22). https://doi.org/10.3390/w14223782
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/TGF93FQ4

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web