UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Usman, Kh Rahat (Auteur)
  • Montero, Rodolfo Alvarado (Auteur)
  • Ghobrial, Tadros (Auteur)
  • Anctil, François (Auteur)
  • van Loenen, Arnejan (Auteur)
Titre
Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach
Résumé
<p><strong class="journal-contentHeaderColor">Abstract.</strong> Year-round river discharge estimation and forecasting is a critical component of sustainable water resource management. However, in cold climate regions such as Canada, this basic task gets intricated due to the challenge of river ice conditions. River ice conditions are dynamic and can change quickly in a short period of time. This dynamic nature makes river ice conditions difficult to forecast. Moreover, the observation of under-ice river discharge also remains a challenge since no reliable method for its estimation has been developed till date. It is therefore an active field of research and development. The integration of river ice hydraulic models in forecasting systems has remained relatively uncommon. The current study has two main objectives: first is to demonstrate the development and capabilities of a river ice forecasting system based on coupled hydrological and hydraulic modelling approach for the Chaudi&egrave;re River in Qu&eacute;bec; and second is to assess its functionality over selected winter events. The forecasting system is developed within a well-known operational forecasting platform: the Delft Flood Early Warning System (Delft-FEWS). The current configuration of the systems integrates (i) meteorological products such as the Regional Ensemble Prediction System (REPS); (ii) a hydrological module implemented through the HydrOlOgical Prediction LAboratory (HOOPLA), a multi-model based hydrological modelling framework; and (iii) hydraulic module implemented through a 1D steady and unsteady HEC-RAS river ice models. The system produces ensemble forecasts for discharge and water level and provides flexibility to modify various dynamic parameters within the modelling chain such as discharge timeseries, ice thickness, ice roughness as well as carryout hindcasting experiments in a batch production way. Performance of the coupled modelling approach was assessed using &ldquo;Perfect forecast&rdquo; over winter events between 2020 and 2023 winter seasons. The root mean square error (RMSE) and percent bias (Pbias) metrics were calculated. The hydrologic module of the system showed significant deviations from the observations. These deviations could be explained by the inherent uncertainty in the under-ice discharge estimates as well as uncertainty in the modelling chain. The hydraulic module of the system performed better and the Pbias was within &plusmn;10 %.</p>
Publication
Geoscientific Model Development Discussions
Pages
1-28
Date
2024/08/28
Langue
English
DOI
10.5194/gmd-2024-116
URL
https://gmd.copernicus.org/preprints/gmd-2024-116/
Consulté le
2025-07-13 19 h 33
Catalogue de bibl.
gmd.copernicus.org
Extra
Publisher: Copernicus GmbH
Référence
Usman, K. R., Montero, R. A., Ghobrial, T., Anctil, F., & van Loenen, A. (2024). Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudi&egrave;re River based on a coupled hydrological-hydrodynamic modelling approach. Geoscientific Model Development Discussions, 1–28. https://doi.org/10.5194/gmd-2024-116
Document
  • Usman et al. - 2024 - Development of an under-ice river discharge foreca.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/NDXSGARL

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web