UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Optimizing ensemble learning for satellite-based multi-hazard monitoring and susceptibility assessment of landslides, land subsidence, floods, and wildfires
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Optimizing ensemble learning for satellite-based multi-hazard monitoring and susceptibility assessment of landslides, land subsidence, floods, and wildfires

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Razavi-Termeh, Seyed Vahid (Auteur)
  • Sadeghi-Niaraki, Abolghasem (Auteur)
  • Ali, Farman (Auteur)
  • Pradhan, Biswajeet (Auteur)
  • Choi, Soo-Mi (Auteur)
Titre
Optimizing ensemble learning for satellite-based multi-hazard monitoring and susceptibility assessment of landslides, land subsidence, floods, and wildfires
Résumé
The preparation of accurate multi-hazard susceptibility maps is essential to effective disaster risk management. Past studies have relied mainly on traditional machine learning models, but these models do not perform well for complex spatial patterns. To address this gap, this study uses two meta-heuristic algorithms (Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)) to provide an optimized Random Forest (RF) model with better predictive ability. We focus on four significant hazards—landslides, land subsidence, wildfires, and floods—in Kurdistan Province, Iran, using Sentinel-1 and Sentinel-2 satellite imagery collected between 2015 and 2022. Furthermore, two models of RF-GA and RF-PSO were utilized to create multi-hazard susceptibility, which were evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). The RF-GA algorithm achieved 91.1% accuracy for flood hazards, 83.8% for wildfires, and 99.1% for landslide hazards. In contrast, utilizing RF-PSO resulted in a 95.9% accuracy for land subsidence hazards. The combined RF-GA algorithm demonstrated superior accuracy to individual RF modeling techniques. Furthermore, eastern regions are more prone to floods and land subsidence, whereas western areas face more significant risks from landslides and wildfires. Additionally, floods and land subsidence exhibit a considerable correlation, impacting each other’s occurrence, while wildfires and landslides demonstrate interacting dynamics, influencing each other’s likelihood of occurrence. © The Author(s) 2025.
Publication
Scientific Reports
Volume
15
Numéro
1
Date
2025
Abrév. de revue
Sci. Rep.
Langue
English
DOI
10.1038/s41598-025-15381-2
ISSN
2045-2322
Catalogue de bibl.
Scopus
Extra
Publisher: Nature Research
Référence
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Ali, F., Pradhan, B., & Choi, S.-M. (2025). Optimizing ensemble learning for satellite-based multi-hazard monitoring and susceptibility assessment of landslides, land subsidence, floods, and wildfires. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-15381-2
Axes du RIISQ
  • 1 - aléas, vulnérabilités et exposition
  • 2 - enjeux de gestion et de gouvernance
  • 3 - aspects biopsychosociaux
Enjeux majeurs
  • Prévision, projection et modélisation
Secteurs et disciplines
  • Nature et Technologie
  • Société et Culture
Types d'événements extrêmes
  • Feux de forêts
  • Inondations et crues
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/LSQ3J7LC

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web