UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Qiu, Yangzi (Auteur)
  • Shi, Xiaogang (Auteur)
  • He, Xiaogang (Auteur)
Titre
Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model
Résumé
Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors
Publication
Environmental Impact Assessment Review
Volume
116
Date
2026
Abrév. de revue
Environ. Impact Assess. Rev.
Langue
English
DOI
10.1016/j.eiar.2025.108130
ISSN
0195-9255
Catalogue de bibl.
Scopus
Extra
Publisher: Elsevier Inc.
Référence
Qiu, Y., Shi, X., & He, X. (2026). Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108130
Axes du RIISQ
  • 1 - aléas, vulnérabilités et exposition
  • 2 - enjeux de gestion et de gouvernance
  • 3 - aspects biopsychosociaux
Enjeux majeurs
  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation
Secteurs et disciplines
  • Nature et Technologie
Types d'événements extrêmes
  • Inondations et crues
Types d'inondations
  • Fluviales
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/EI9N6H8C

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web