UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. A random forest machine learning model to detect fluvial hazards
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

A random forest machine learning model to detect fluvial hazards

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Gava, Marco (Auteur)
  • Biron, Pascale M. (Auteur)
  • Buffin‐Bélanger, Thomas (Auteur)
Titre
A random forest machine learning model to detect fluvial hazards
Résumé
Abstract Fluvial hazards of river mobility and flooding are often problematic for road infrastructure and need to be considered in the planning process. The extent of river and road infrastructure networks and their tendency to be close to each other creates a need to be able to identify the most dangerous areas quickly and cost‐effectively. In this study, we propose a novel methodology using random forest (RF) machine learning methods to provide easily interpretable fine‐scale fluvial hazard predictions for large river systems. The tools developed provide predictions for three models: presence of flooding (PFM), presence of mobility (PMM) and type of erosion model (TEM, lateral migration, or incision) at reference points every 100 m along the fluvial network of three watersheds within the province of Quebec, Canada. The RF models use variables focused on river conditions and hydrogeomorphological processes such as confinement, sinuosity, and upstream slope. Training/validation data included field observations, results from hydraulic and erosion models, government infrastructure databases, and hydro‐ geomorphological assessments using 1‐m DEM and satellite/historical imagery. A total of 1807 reference points were classified for flooding, 1542 for mobility, and 847 for the type of erosion out of the 11,452 reference points for the 1145 km of rivers included in the study. These were divided into training (75%) and validation (25%) datasets, with the training dataset used to train supervised RF models. The validation dataset indicated the models were capable of accurately predicting the potential for fluvial hazards to occur, with precision results for the three models ranging from 83% to 94% of points accurately predicted. The results of this study suggest that RF models are a cost‐effective tool to quickly evaluate the potential for fluvial hazards to occur at the watershed scale.
Publication
River Research and Applications
Date
2024-07-23
Abrév. de revue
River Research & Apps
Langue
en
DOI
10.1002/rra.4353
ISSN
1535-1459, 1535-1467
URL
https://onlinelibrary.wiley.com/doi/10.1002/rra.4353
Consulté le
2024-09-19 14 h 03
Catalogue de bibl.
DOI.org (Crossref)
Référence
Gava, M., Biron, P. M., & Buffin‐Bélanger, T. (2024). A random forest machine learning model to detect fluvial hazards. River Research and Applications. https://doi.org/10.1002/rra.4353
Axes du RIISQ
  • 1 - aléas, vulnérabilités et exposition
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/BHN3RXSC

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web