UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 895
  • 896
  • 897
  • 898
  • 899
  • ...
  • 1 424
  • Page 897 de 1 424

Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Jeong, D. I. (Auteur)
  • St-Hilaire, A. (Auteur)
  • Ouarda, T. B. M. J. (Auteur)
  • Gachon, P. (Auteur)
Titre
Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator
Résumé
This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.
Publication
Climatic Change
Volume
114
Numéro
3
Pages
567-591
Date
2012-10-01
Abrév. de revue
Climatic Change
Langue
en
DOI
10.1007/s10584-012-0451-3
ISSN
1573-1480
URL
https://doi.org/10.1007/s10584-012-0451-3
Consulté le
2024-06-18 01 h 24
Catalogue de bibl.
Springer Link
Référence
Jeong, D. I., St-Hilaire, A., Ouarda, T. B. M. J., & Gachon, P. (2012). Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator. Climatic Change, 114(3), 567–591. https://doi.org/10.1007/s10584-012-0451-3
Membres du RIISQ
  • Gachon, Philippe
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/I8WAXAGN
  • 1
  • ...
  • 895
  • 896
  • 897
  • 898
  • 899
  • ...
  • 1 424
  • Page 897 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web