UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity Maps
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 808
  • 809
  • 810
  • 811
  • 812
  • ...
  • 1 424
  • Page 810 de 1 424

Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity Maps

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Baghermanesh, Shadi Sadat (Auteur)
  • Jabari, Shabnam (Auteur)
  • McGrath, Heather (Auteur)
Titre
Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity Maps
Résumé
Synthetic Aperture Radar (SAR) imagery is a vital tool for flood mapping due to its capability to acquire images day and night in almost any weather and to penetrate through cloud cover. In rural areas, SAR backscatter intensity can be used to detect flooded areas accurately; however, the complexity of urban structures makes flood mapping in urban areas a challenging task. In this study, we examine the synergistic use of SAR simulated reflectivity maps and Polarimetric and Interferometric SAR (PolInSAR) features in the improvement of flood mapping in urban environments. We propose a machine learning model employing simulated and PolInSAR features derived from TerraSAR-X images along with five auxiliary features, namely elevation, slope, aspect, distance from the river, and land-use/land-cover that are well-known to contribute to flood mapping. A total of 2450 data points have been used to build and evaluate the model over four different areas with different vegetation and urban density. The results indicated that by using PolInSAR and SAR simulated reflectivity maps together with five auxiliary features, a classification overall accuracy of 93.1% in urban areas was obtained, representing a 9.6% improvement over using the five auxiliary features alone.
Publication
Remote Sensing
Volume
14
Numéro
23
Pages
6154
Date
2022-12-05
Abrév. de revue
Remote Sensing
Langue
en
DOI
10.3390/rs14236154
ISSN
2072-4292
URL
https://www.mdpi.com/2072-4292/14/23/6154
Consulté le
2024-01-22 01 h 09
Catalogue de bibl.
DOI.org (Crossref)
Référence
Baghermanesh, S. S., Jabari, S., & McGrath, H. (2022). Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity Maps. Remote Sensing, 14(23), 6154. https://doi.org/10.3390/rs14236154
Types d'événements extrêmes
  • Inondations et crues
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/4DUKIZ83
  • 1
  • ...
  • 808
  • 809
  • 810
  • 811
  • 812
  • ...
  • 1 424
  • Page 810 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web