UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources: A Case Study Using Ensemble Members Derived From a Database of Deterministic Wavelet‐Based Models
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 75
  • 76
  • 77
  • 78
  • 79
  • ...
  • 1 399
  • Page 77 de 1 399

A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources: A Case Study Using Ensemble Members Derived From a Database of Deterministic Wavelet‐Based Models

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Quilty, John (Auteur)
  • Adamowski, Jan (Auteur)
  • Boucher, Marie‐Amélie (Auteur)
Titre
A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources: A Case Study Using Ensemble Members Derived From a Database of Deterministic Wavelet‐Based Models
Résumé
Abstract In water resources applications (e.g., streamflow, rainfall‐runoff, urban water demand [UWD], etc.), ensemble member selection and ensemble member weighting are two difficult yet important tasks in the development of ensemble forecasting systems. We propose and test a stochastic data‐driven ensemble forecasting framework that uses archived deterministic forecasts as input and results in probabilistic water resources forecasts. In addition to input data and (ensemble) model output uncertainty, the proposed approach integrates both ensemble member selection and weighting uncertainties, using input variable selection and data‐driven methods, respectively. Therefore, it does not require one to perform ensemble member selection and weighting separately. We applied the proposed forecasting framework to a previous real‐world case study in Montreal, Canada, to forecast daily UWD at multiple lead times. Using wavelet‐based forecasts as input data, we develop the Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, the first multiwavelet ensemble stochastic forecasting framework that produces probabilistic forecasts. For the considered case study, several variants of Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, produced using different input variable selection methods (partial correlation input selection and Edgeworth Approximations‐based conditional mutual information) and data‐driven models (multiple linear regression, extreme learning machines, and second‐order Volterra series models), are shown to outperform wavelet‐ and nonwavelet‐based benchmarks, especially during a heat wave (first time studied in the UWD forecasting literature). , Key Points A stochastic data‐driven ensemble framework is introduced for probabilistic water resources forecasting Ensemble member selection and weighting uncertainties are explicitly considered alongside input data and model output uncertainties Wavelet‐based model outputs are used as input to the framework for an urban water demand forecasting study outperforming benchmark methods
Publication
Water Resources Research
Volume
55
Numéro
1
Pages
175-202
Date
01/2019
Abrév. de revue
Water Resources Research
Langue
en
DOI
10.1029/2018WR023205
ISSN
0043-1397, 1944-7973
Titre abrégé
A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources
URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR023205
Consulté le
2024-05-25 11 h 01
Catalogue de bibl.
DOI.org (Crossref)
Référence
Quilty, J., Adamowski, J., & Boucher, M. (2019). A Stochastic Data‐Driven Ensemble Forecasting Framework for Water Resources: A Case Study Using Ensemble Members Derived From a Database of Deterministic Wavelet‐Based Models. Water Resources Research, 55(1), 175–202. https://doi.org/10.1029/2018WR023205
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/S9DQJUTZ
  • 1
  • ...
  • 75
  • 76
  • 77
  • 78
  • 79
  • ...
  • 1 399
  • Page 77 de 1 399

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web