Bibliographie complète
Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East
Type de ressource
Auteurs/contributeurs
- Khosravi, Younes (Auteur)
- Ouarda, Taha B.M.J. (Auteur)
- Homayouni, Saeid (Auteur)
Titre
Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East
Résumé
Abstract
Climate change in the Middle East has intensified with rising temperatures, shifting rainfall patterns, and more frequent extreme events. This study introduces the Stacking-EML framework, which merges five machine learning models three meta-learners to predict maximum temperature, minimum temperature, and precipitation using CMIP6 data under SSP1-2.6, SSP2-4.5, and SSP5-8.5. The results indicate that Stacking-EML not only significantly improves prediction accuracy compared to individual models and traditional CMIP6 outputs but also enhances climate projections by integrating multiple ML models, offering more reliable, regionally refined forecasts. Findings show R² improvements to 0.99 for maximum temperature, 0.98 for minimum temperature, and 0.82 for precipitation. Under SSP5-8.5, summer temperatures in southern regions are expected to exceed 45 °C, exacerbating drought conditions due to reduced rainfall. Spatial analysis reveals that Saudi Arabia, Oman, Yemen, and Iran face the greatest heat and drought impacts, while Turkey and northern Iran may experience increased precipitation and flood risks.
Publication
npj Climate and Atmospheric Science
Volume
8
Numéro
1
Pages
174
Date
2025-05-08
Abrév. de revue
npj Clim Atmos Sci
Langue
en
ISSN
2397-3722
Consulté le
2025-05-29 14 h 22
Catalogue de bibl.
DOI.org (Crossref)
Référence
Khosravi, Y., Ouarda, T. B. M. J., & Homayouni, S. (2025). Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East. Npj Climate and Atmospheric Science, 8(1), 174. https://doi.org/10.1038/s41612-025-01033-9
Lien vers cette notice