UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Hybrid forecasting: blending climate predictions with AI models
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 181
  • 182
  • 183
  • 184
  • 185
  • ...
  • 1 400
  • Page 183 de 1 400

Hybrid forecasting: blending climate predictions with AI models

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Slater, Louise J. (Auteur)
  • Arnal, Louise (Auteur)
  • Boucher, Marie-Amélie (Auteur)
  • Chang, Annie Y.-Y. (Auteur)
  • Moulds, Simon (Auteur)
  • Murphy, Conor (Auteur)
  • Nearing, Grey (Auteur)
  • Shalev, Guy (Auteur)
  • Shen, Chaopeng (Auteur)
  • Speight, Linda (Auteur)
  • Villarini, Gabriele (Auteur)
  • Wilby, Robert L. (Auteur)
  • Wood, Andrew (Auteur)
  • Zappa, Massimiliano (Auteur)
Titre
Hybrid forecasting: blending climate predictions with AI models
Résumé
Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.
Publication
Hydrology and Earth System Sciences
Volume
27
Numéro
9
Date
2023-05-15
Abrév. de revue
Hydrol. Earth Syst. Sci.
Langue
en
DOI
10.5194/hess-27-1865-2023
ISSN
1607-7938
Titre abrégé
Hybrid forecasting
URL
https://hess.copernicus.org/articles/27/1865/2023/
Consulté le
2024-01-15 16 h 20
Catalogue de bibl.
DOI.org (Crossref)
Référence
Slater, L. J., Arnal, L., Boucher, M.-A., Chang, A. Y.-Y., Moulds, S., Murphy, C., Nearing, G., Shalev, G., Shen, C., Speight, L., Villarini, G., Wilby, R. L., Wood, A., & Zappa, M. (2023). Hybrid forecasting: blending climate predictions with AI models. Hydrology and Earth System Sciences, 27(9). https://doi.org/10.5194/hess-27-1865-2023
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/R7R9PHDV
  • 1
  • ...
  • 181
  • 182
  • 183
  • 184
  • 185
  • ...
  • 1 400
  • Page 183 de 1 400

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web