UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 102
  • 103
  • 104
  • 105
  • 106
  • ...
  • 1 400
  • Page 104 de 1 400

A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Vadiati, Meysam (Auteur)
  • Nalley, Deasy (Auteur)
  • Adamowski, Jan (Auteur)
  • Nakhaei, Mohammad (Auteur)
  • Asghari-Moghaddam, Asghar (Auteur)
Titre
A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices
Résumé
Abstract Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydrological data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the present research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL in terms of accuracy when assessing groundwater quality using irrigation indices.
Publication
Journal of Water and Land Development
Volume
43
Numéro
1
Pages
158-170
Date
2019-12-01
DOI
10.2478/jwld-2019-0074
ISSN
2083-4535
URL
https://journals.pan.pl/dlibra/publication/131467/edition/114839/content
Consulté le
2024-05-25 11 h 41
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
http://creativecommons.org/licenses/by-nc-nd/3.0
Référence
Vadiati, M., Nalley, D., Adamowski, J., Nakhaei, M., & Asghari-Moghaddam, A. (2019). A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices. Journal of Water and Land Development, 43(1), 158–170. https://doi.org/10.2478/jwld-2019-0074
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/39TUQFF8
  • 1
  • ...
  • 102
  • 103
  • 104
  • 105
  • 106
  • ...
  • 1 400
  • Page 104 de 1 400

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web