UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 98
  • 99
  • 100
  • 101
  • 102
  • ...
  • 1 400
  • Page 100 de 1 400

Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Troin, Magali (Auteur)
  • Arsenault, Richard (Auteur)
  • Wood, Andrew W. (Auteur)
  • Brissette, François (Auteur)
  • Martel, Jean‐Luc (Auteur)
Titre
Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years
Résumé
Abstract Ensemble forecasting applied to the field of hydrology is currently an established area of research embracing a broad spectrum of operational situations. This work catalogs the various pathways of ensemble streamflow forecasting based on an exhaustive review of more than 700 studies over the last 40 years. We focus on the advanced state of the art in the model‐based (dynamical) ensemble forecasting approaches. Ensemble streamflow prediction systems are categorized into three leading classes: statistics‐based streamflow prediction systems, climatology‐based ensemble streamflow prediction systems and numerical weather prediction‐based hydrological ensemble prediction systems. For each ensemble approach, technical information, as well as details about its strengths and weaknesses, are provided based on a critical review of the studies listed. Through this literature review, the performance and uncertainty associated with the ensemble forecasting systems are underlined from both operational and scientific viewpoints. Finally, the remaining key challenges and prospective future research directions are presented, notably through hybrid dynamical ‐ statistical learning approaches, which obviously present new challenges to be overcome in order to allow the successful employment of ensemble streamflow forecasting systems in the next decades. Targeting students, researchers and practitioners, this review provides a detailed perspective on the major features of an increasingly important area of hydrological forecasting. , Key Points This work summarizes the 40 years of research in the generation of streamflow forecasts based on an exhaustive review of studies Ensemble prediction systems are categorized into three classes: statistics‐based, climatology‐based and numerical weather prediction‐based hydrological ensemble prediction systems For each ensemble forecasting system, thorough technical information is provided
Publication
Water Resources Research
Volume
57
Numéro
7
Date
07/2021
Abrév. de revue
Water Resources Research
Langue
en
DOI
10.1029/2020WR028392
ISSN
0043-1397, 1944-7973
Titre abrégé
Generating Ensemble Streamflow Forecasts
URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028392
Consulté le
2024-06-16 00 h 23
Catalogue de bibl.
DOI.org (Crossref)
Référence
Troin, M., Arsenault, R., Wood, A. W., Brissette, F., & Martel, J. (2021). Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resources Research, 57(7). https://doi.org/10.1029/2020WR028392
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/Q232NTSD
  • 1
  • ...
  • 98
  • 99
  • 100
  • 101
  • 102
  • ...
  • 1 400
  • Page 100 de 1 400

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web