UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Improving near real-time flood extraction pipeline from SAR data using deep learning
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 671
  • 672
  • 673
  • 674
  • 675
  • ...
  • 1 424
  • Page 673 de 1 424

Improving near real-time flood extraction pipeline from SAR data using deep learning

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Rapport
Auteurs/contributeurs
  • Turgeon-Pelchat, Mathieu (Auteur)
  • McGrath, Heather (Auteur)
  • Esfahani, Fatemeh (Auteur)
  • Tolszczuk-Leclerc, Simon (Auteur)
  • Rainville, Thomas (Auteur)
  • Svacina, Nicolas (Auteur)
  • Zhou, Lingjun (Auteur)
  • Langari, Zarrin (Auteur)
  • Houngbo, Hospice (Auteur)
Titre
Improving near real-time flood extraction pipeline from SAR data using deep learning
Résumé
The Canada Centre for Mapping and Earth Observation (CCMEO) uses Radarsat Constellation Mission (RCM) data for near-real time flood mapping. One of the many advantages of using SAR sensors, is that they are less affected by the cloud coverage and atmospheric conditions, compared to optical sensors. RCM has been used operationally since 2020 and employs 3 satellites, enabling lower revisit times and increased imagery coverage. The team responsible for the production of flood maps in the context of emergency response are able to produce maps within four hours from the data acquisition. Although the results from their automated system are good, there are some limitations to it, requiring manual intervention to correct the data before publication. Main limitations are located in urban and vegetated areas. Work started in 2021 to make use of deep learning algorithms, namely convolutional neural networks (CNN), to improve the performances of the automated production of flood inundation maps. The training dataset make use of the former maps created by the emergency response team and is comprised of over 80 SAR images and corresponding digital elevation model (DEM) in multiple locations in Canada. The training and test images were split in smaller tiles of 256 x 256 pixels, for a total of 22,469 training tiles and 6,821 test tiles. Current implementation uses a U-Net architecture from NRCan geo-deep-learning pipeline (https://github.com/NRCan/geo-deep-learning). To measure performance of the model, intersection over union (IoU) metric is used. The model can achieve 83% IoU for extracting water and flood from background areas over the test tiles. Next steps include increasing the number of different geographical contexts in the training set, towards the integration of the model into production.
Date
2023-05-15
URL
https://meetingorganizer.copernicus.org/EGU23/EGU23-9091.html
Consulté le
2024-01-22 01 h 08
Catalogue de bibl.
DOI.org (Crossref)
Extra
DOI: 10.5194/egusphere-egu23-9091
Référence
Turgeon-Pelchat, M., McGrath, H., Esfahani, F., Tolszczuk-Leclerc, S., Rainville, T., Svacina, N., Zhou, L., Langari, Z., & Houngbo, H. (2023). Improving near real-time flood extraction pipeline from SAR data using deep learning. https://doi.org/10.5194/egusphere-egu23-9091
Types d'événements extrêmes
  • Évènements liés au froid (neige, glace)
  • Inondations et crues
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/V7WV4PQV
  • 1
  • ...
  • 671
  • 672
  • 673
  • 674
  • 675
  • ...
  • 1 424
  • Page 673 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web