UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Advancing Spatial Drought Forecasts by Integrating an Improved Outlier Robust Extreme Learning Machine with Gridded Data: A Case Study of the Lower Mainland Basin, British Columbia, Canada
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 953
  • 954
  • 955
  • 956
  • 957
  • ...
  • 1 424
  • Page 955 de 1 424

Advancing Spatial Drought Forecasts by Integrating an Improved Outlier Robust Extreme Learning Machine with Gridded Data: A Case Study of the Lower Mainland Basin, British Columbia, Canada

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Salimi, Amirhossein (Auteur)
  • Noori, Amir (Auteur)
  • Ebtehaj, Isa (Auteur)
  • Ghobrial, Tadros (Auteur)
  • Bonakdari, Hossein (Auteur)
Titre
Advancing Spatial Drought Forecasts by Integrating an Improved Outlier Robust Extreme Learning Machine with Gridded Data: A Case Study of the Lower Mainland Basin, British Columbia, Canada
Résumé
Droughts have extensive consequences, affecting the natural environment, water quality, public health, and exacerbating economic losses. Precise drought forecasting is essential for promoting sustainable development and mitigating risks, especially given the frequent drought occurrences in recent decades. This study introduces the Improved Outlier Robust Extreme Learning Machine (IORELM) for forecasting drought using the Multivariate Standardized Drought Index (MSDI). For this purpose, four observation stations across British Columbia, Canada, were selected. Precipitation and soil moisture data with one up to six lags are utilized as inputs, resulting in 12 variables for the model. An exhaustive analysis of all potential input combinations is conducted using IORELM to identify the best one. The study outcomes emphasize the importance of incorporating precipitation and soil moisture data for accurate drought prediction. IORELM shows promising results in drought classification, and the best input combination was found for each station based on its results. While high Area Under Curve (AUC) values across stations, a Precision/Recall trade-off indicates variable prediction tendencies. Moreover, the F1-score is moderate, meaning the balance between Precision, Recall, and Classification Accuracy (CA) is notably high at specific stations. The results show that stations near the ocean, like Pitt Meadows, have higher predictability up to 10% in AUC and CA compared to inland stations, such as Langley, which exhibit lower values. These highlight geographic influence on model performance.
Publication
Sustainability
Volume
16
Numéro
8
Pages
3461
Date
2024/1
Langue
en
DOI
10.3390/su16083461
ISSN
2071-1050
Titre abrégé
Advancing Spatial Drought Forecasts by Integrating an Improved Outlier Robust Extreme Learning Machine with Gridded Data
URL
https://www.mdpi.com/2071-1050/16/8/3461
Consulté le
2024-06-04 11 h 46
Catalogue de bibl.
www.mdpi.com
Autorisations
http://creativecommons.org/licenses/by/3.0/
Référence
Salimi, A., Noori, A., Ebtehaj, I., Ghobrial, T., & Bonakdari, H. (2024). Advancing Spatial Drought Forecasts by Integrating an Improved Outlier Robust Extreme Learning Machine with Gridded Data: A Case Study of the Lower Mainland Basin, British Columbia, Canada. Sustainability, 16(8), 3461. https://doi.org/10.3390/su16083461
Lieux
  • Canada (hors-Québec)
Membres du RIISQ
  • Étudiant.es
Types d'événements extrêmes
  • Sécheresses et canicules
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/MKBDTTSC
  • 1
  • ...
  • 953
  • 954
  • 955
  • 956
  • 957
  • ...
  • 1 424
  • Page 955 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web