UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 774
  • 775
  • 776
  • 777
  • 778
  • ...
  • 1 424
  • Page 776 de 1 424

Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Esfandiari, Morteza (Auteur)
  • Abdi, Ghasem (Auteur)
  • Jabari, Shabnam (Auteur)
  • McGrath, Heather (Auteur)
  • Coleman, David (Auteur)
Titre
Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest
Résumé
Devastating floods occur regularly around the world. Recently, machine learning models have been used for flood susceptibility mapping. However, even when these algorithms are provided with adequate ground truth training samples, they can fail to predict flood extends reliably. On the other hand, the height above nearest drainage (HAND) model can produce flood prediction maps with limited accuracy. The objective of this research is to produce an accurate and dynamic flood modeling technique to produce flood maps as a function of water level by combining the HAND model and machine learning. In this paper, the HAND model was utilized to generate a preliminary flood map; then, the predictions of the HAND model were used to produce pseudo training samples for a R.F. model. To improve the R.F. training stage, five of the most effective flood mapping conditioning factors are used, namely, Altitude, Slope, Aspect, Distance from River and Land use/cover map. In this approach, the R.F. model is trained to dynamically estimate the flood extent with the pseudo training points acquired from the HAND model. However, due to the limited accuracy of the HAND model, a random sample consensus (RANSAC) method was used to detect outliers. The accuracy of the proposed model for flood extent prediction, was tested on different flood events in the city of Fredericton, NB, Canada in 2014, 2016, 2018, 2019. Furthermore, to ensure that the proposed model can produce accurate flood maps in other areas as well, it was also tested on the 2019 flood in Gatineau, QC, Canada. Accuracy assessment metrics, such as overall accuracy, Cohen’s kappa coefficient, Matthews correlation coefficient, true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR), were used to compare the predicted flood extent of the study areas, to the extent estimated by the HAND model and the extent imaged by Sentinel-2 and Landsat satellites. The results confirm that the proposed model can improve the flood extent prediction of the HAND model without using any ground truth training data.
Publication
Remote Sensing
Volume
12
Numéro
19
Pages
3206
Date
2020-10-01
Abrév. de revue
Remote Sensing
Langue
en
DOI
10.3390/rs12193206
ISSN
2072-4292
URL
https://www.mdpi.com/2072-4292/12/19/3206
Consulté le
2024-01-22 01 h 09
Catalogue de bibl.
DOI.org (Crossref)
Référence
Esfandiari, M., Abdi, G., Jabari, S., McGrath, H., & Coleman, D. (2020). Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest. Remote Sensing, 12(19), 3206. https://doi.org/10.3390/rs12193206
Types d'événements extrêmes
  • Inondations et crues
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/KI385KCD
  • 1
  • ...
  • 774
  • 775
  • 776
  • 777
  • 778
  • ...
  • 1 424
  • Page 776 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web