UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • ...
  • 1 447
  • Page 26 de 1 447

A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Bourget, Mathilde (Auteur)
  • Boudreault, Mathieu (Auteur)
  • Carozza, David A. (Auteur)
  • Boudreault, Jérémie (Auteur)
  • Raymond, Sébastien (Auteur)
Titre
A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada
Résumé
There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.
Publication
ASTIN Bulletin: The Journal of the IAA
Volume
54
Numéro
3
Pages
495-517
Date
2024/09
Langue
en
DOI
10.1017/asb.2024.19
ISSN
0515-0361, 1783-1350
URL
https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/data-science-approach-to-climate-change-risk-assessment-applied-to-pluvial-flood-occurrences-for-the-united-states-and-canada/E28763E2E9F9AFC003CF6806534E47F7
Consulté le
2025-07-13 13 h 48
Catalogue de bibl.
Cambridge University Press
Référence
Bourget, M., Boudreault, M., Carozza, D. A., Boudreault, J., & Raymond, S. (2024). A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada. ASTIN Bulletin: The Journal of the IAA, 54(3), 495–517. https://doi.org/10.1017/asb.2024.19
Document
  • Bourget et al. - 2024 - A data science approach to climate change risk ass.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/KHFDT6A6
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • ...
  • 1 447
  • Page 26 de 1 447

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web