UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Design and Implementation of Machine Learning Models and Algorithms for Flood, Drought and Frazil Prediction
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...
  • 1 120
  • Page 10 de 1 120

Design and Implementation of Machine Learning Models and Algorithms for Flood, Drought and Frazil Prediction

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Thèse
Auteur/contributeur
  • Yagnik, Bhargav Charudatt (Auteur)
Titre
Design and Implementation of Machine Learning Models and Algorithms for Flood, Drought and Frazil Prediction
Résumé
Natural calamities like floods and droughts pose a significant threat to humanity, impacting millions of people each year and incurring substantial economic losses to society. In response to this challenge, this thesis focuses on developing advanced machine learning techniques to improve water height prediction accuracy that can aid municipalities in effective flood mitigation. The primary objective of this study is to evaluate an innovative architecture that leverages Long Short Term Networks - neural networks to predict water height accurately in three different environmental scenarios, i.e., frazil, droughts and floods due to snow spring melt. A distinguishing feature of our approach is the incorporation of meteorological forecast as an input parameter into the prediction model. By modeling the intricate relationships between water level data, historical meteorological data and meteorological forecasts, we seek to evaluate the impact of meteorological forecasts and if any inaccuracies could impact water-level prediction. We compare the outcomes obtained by incorporating next-hour, next-day and next-week meteorological data into our novel LSTM model. Our results indicate a comprehensive comparison of the usage of various parameters as input and our findings suggest that accurate weather forecasts are crucial in achieving reliable water height predictions. Additionally, this study focuses on the utilization of IoT sensor data in combination with ML models to enhance the effectiveness of flood prediction and management. We present an online machine learning approach that performs online training of the model using real-time data from IoT sensors. The integration of live sensor data provides a dynamic and adaptive system that demonstrates superior predictive capabilities compared to traditional static models. By adopting these advanced techniques, we can mitigate the adverse impacts of natural catastrophes and work towards building more resilient and disaster-resistant communities.
Type
masters
Université
Concordia University
Date
2023-08-20
Nb de pages
64
Langue
en
URL
https://spectrum.library.concordia.ca/id/eprint/992751/
Consulté le
2025-05-25 12 h 26
Catalogue de bibl.
spectrum.library.concordia.ca
Autorisations
term_access
Référence
Yagnik, B. C. (2023). Design and Implementation of Machine Learning Models and Algorithms for Flood, Drought and Frazil Prediction [Masters, Concordia University]. https://spectrum.library.concordia.ca/id/eprint/992751/
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/HSW2F35B
  • 1
  • ...
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...
  • 1 120
  • Page 10 de 1 120

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web