UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 1 028
  • 1 029
  • 1 030
  • 1 031
  • 1 032
  • ...
  • 1 424
  • Page 1 030 de 1 424

Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Eum, Hyung-Il (Auteur)
  • Gachon, Philippe (Auteur)
  • Laprise, René (Auteur)
Titre
Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada
Résumé
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affected by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. These results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.
Publication
Advances in Meteorology
Volume
2016
Pages
1-17
Date
2016
Abrév. de revue
Advances in Meteorology
Langue
en
DOI
10.1155/2016/1478514
ISSN
1687-9309, 1687-9317
Titre abrégé
Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations
URL
http://www.hindawi.com/journals/amete/2016/1478514/
Consulté le
2024-06-18 01 h 20
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
http://creativecommons.org/licenses/by/4.0/
Référence
Eum, H.-I., Gachon, P., & Laprise, R. (2016). Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada. Advances in Meteorology, 2016, 1–17. https://doi.org/10.1155/2016/1478514
Lieux
  • Québec (province)
Membres du RIISQ
  • Gachon, Philippe
Secteurs et disciplines
  • Nature et Technologie
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/A5HXE67E
  • 1
  • ...
  • 1 028
  • 1 029
  • 1 030
  • 1 031
  • 1 032
  • ...
  • 1 424
  • Page 1 030 de 1 424

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web