Bibliographie complète
Valeur ajoutée de l’information sur la distribution spatiale du couvert de neige pour la prédiction des débits de crues
Type de ressource
Auteur/contributeur
- Tiwari, Dipti (Auteur)
Titre
Valeur ajoutée de l’information sur la distribution spatiale du couvert de neige pour la prédiction des débits de crues
Résumé
Abstract: In Canada, the annual runoff is predominantly influenced by snowmelt following the winter season, with a substantial portion (40-80\%) occurring during the spring period, leading to flooding in low-lying areas. Accurate prediction of streamflow is essential for hydropower production, effective flood management, necessitating the incorporation of comprehensive spatially distributed snow observations into hydrological models. This draws the attention to the research question " How can we utilize spatially distributed snow information at various spatial and temporal scales to enhance our understanding of snow processes and apply it for enhanced model calibration to improve hydrological model performance?" The first objective of this thesis is to investigate the utilization of spatially distributed snow information (SNODAS- SNOw Data Assimilation System) for the calibration of a hydrological model and to determine its impact on model performance. A distributed hydrological model, HYDROTEL, has been implemented in the Au Saumon River watershed using input data from ERA-5 Land for temperature data and MSWEP for precipitation data. Seven different calibration experiments are conducted, employing three different objective functions: Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), and the SPAtial EFficiency metric (SPAEF). These objective functions are utilized individually or in combination as part of multi-objective calibration processes. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and KGE compared to calibration experiment solely based on NSE. The findings of this study hold significant relevance and potential applicability in emerging satellite technology, particularly the future Terrestrial Snow Mass Mission (TSMM). The study then explores the impact of temporal resolution and signal saturation for model calibration by using SNODAS data as proxy SWE observations mimicking the characteristics of the TSMM product to calibrate the HYDROTEL model. Despite the limitations of it's temporal resolution and signal saturation it is noteworthy that TSMM data exhibits significant potential for enhancing model performance thereby highlighting its utility for hydrological modeling. This study then focuses on the spatio-temporal analysis of snow processes influencing the spatial variability and distribution of snow depth in a small-scale experimental watershed. Drone photogrammetry is employed to capture spatially distributed snow information over the watershed during the winter seasons of 2022 and 2023. The photogrammetric data facilitated the generation of high-resolution digital surface models (DSMs). Empirical Orthogonal Function (EOF) analysis is applied to understand the spatial distribution of snow, enabling a detailed examination of various snow processes at the watershed scale. This thesis explores the added value of spatially distributed snow cover information in predicting spring runoff. Each part of the study contributes to a comprehensive understanding of the spatial distribution of snow and its significance in hydrology.
Date
2024
Langue
eng
Consulté le
2025-05-25 12 h 24
Catalogue de bibl.
savoirs.usherbrooke.ca
Autorisations
© Dipti Tiwari
Extra
Accepted: 2024-05-30T19:00:46Z
Publisher: Université de Sherbrooke
Référence
Tiwari, D. (2024). Valeur ajoutée de l’information sur la distribution spatiale du couvert de neige pour la prédiction des débits de crues. https://savoirs.usherbrooke.ca/handle/11143/21674
Lien vers cette notice