UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. A Kriging Method for the Estimation of ALS Point-Cloud Accuracy without Ground Truth
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 193
  • 194
  • 195
  • 196
  • 197
  • ...
  • 1 400
  • Page 195 de 1 400

A Kriging Method for the Estimation of ALS Point-Cloud Accuracy without Ground Truth

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Pashaei, Zahra (Auteur)
  • Guilbert, Éric (Auteur)
  • Badard, Thierry (Auteur)
Titre
A Kriging Method for the Estimation of ALS Point-Cloud Accuracy without Ground Truth
Résumé
Airborne LiDAR scanning is a promising approach to providing high-resolution products that are appropriate for different applications, such as flood management. However, the vertical accuracy of airborne LiDAR point clouds is not constant and varies in space. Having a better knowledge of their accuracy will assist decision makers in more accurately estimating the damage caused by flood. Data producers often report the total estimation of errors by means of comparison with a ground truth. However, the reliability of such an approach depends on various factors including the sample size, accessibility to ground truth, distribution, and a large enough diversity of ground truth, which comes at a cost and is somewhat unfeasible in the larger scale. Therefore, the main objective of this article is to propose a method that could provide a local estimation of error without any third-party datasets. In this regard, we take advantage of geostatistical ordinary kriging as an alternative accuracy estimator. The challenge of considering constant variation across the space leads us to propose a non-stationary ordinary kriging model that results in the local estimation of elevation accuracy. The proposed method is compared with global ordinary kriging and a ground truth, and the results indicate that our method provides more reliable error values. These errors are lower in urban and semi-urban areas, especially in farmland and residential areas, but larger in forests, due to the lower density of points and the larger terrain variations.
Publication
Remote Sensing
Volume
15
Numéro
19
Pages
4819
Date
2023/1
Langue
en
DOI
10.3390/rs15194819
ISSN
2072-4292
URL
https://www.mdpi.com/2072-4292/15/19/4819
Consulté le
2024-06-04 00 h 22
Catalogue de bibl.
www.mdpi.com
Autorisations
http://creativecommons.org/licenses/by/3.0/
Référence
Pashaei, Z., Guilbert, É., & Badard, T. (2023). A Kriging Method for the Estimation of ALS Point-Cloud Accuracy without Ground Truth. Remote Sensing, 15(19), 4819. https://doi.org/10.3390/rs15194819
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/5BXBZWSZ
  • 1
  • ...
  • 193
  • 194
  • 195
  • 196
  • 197
  • ...
  • 1 400
  • Page 195 de 1 400

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web