Votre recherche
Résultats 92 ressources
-
A framework is proposed using multi-stream phycocyanin probe readings to manage cyanobacterial risks at the source water and across the drinking water treatment processes. , In situ phycocyanin (PC) probes have been deployed as a cost-effective and efficient way to monitor cyanobacterial (CB) abundance in drinking water sources and to identify periods of potential risk at drinking water treatment plants (DWTPs). Monitoring CB removal efficacies in near real-time by sequentially using a single probe for multiple streams across the treatment plant provides a more useful assessment of CB risk breakthrough in treated water. Removal efficacies were measured in three DWTPs using integrated mass fluxes estimated from PC readings and grab sample total CB biovolume estimations in raw, clarified, filtered, and treated water. Selective CB species removal during the treatment processes was also evaluated. In addition, relationships between physio-chemical parameters (turbidity, pH, dissolved oxygen, conductivity, chlorophyll-a and temperature) and PC across the treatment processes were investigated. Finally, a framework to use in situ multi-stream PC monitoring, gathering data across the treatment chain, is proposed to manage risks of CB cells breakthrough in treated water. Estimates of 2 hour moving average PC metrics are proposed to provide short term alert in raw water and establish periods of treatment vulnerability or dysfunction, while daily mean PC values can be used to estimate total and process specific log removals to justify treatment adjustments. Benefits and limitations of the tested in situ probes for the application of alert levels are discussed, and key knowledge gaps for future research and guidance are identified.
-
Résumé: De nombreux articles publiés récemment ont laissé apparaître l’émergence d’un nouveau phénomène dans notre rapport avec la pandémie de COVID-19 : la fatigue pandémique. Ce phénomène suggère l’apparition d’une tendance générale de lassitude face aux mesures sanitaires et à l’état d’urgence devenu permanent. L’objectif de cet article est de replacer cet enjeu dans le contexte de la réalisation d’un projet de recherche portant sur les impacts psychosociaux durant la pandémie. Si relativement peu de recherches se sont intéressées à la fatigue pandémique, la réalité de ce phénomène a été mise en évidence dans le cadre d’un projet de recherche multi-annuelle effectuée durant la pandémie. En termes de méthode, notre équipe multidisciplinaire à l’Université de Sherbrooke a développé un protocole d’enquête permettant d’évaluer les effets de la pandémie de COVID-19 sur la santé mentale à travers des études transversales répétées. La dernière phase de l’enquête inclut un volet additionnel qui cherche à comprendre de quelle manière les conséquences de la pandémie peuvent s’appliquer à d’autres crises systémiques, notamment aux changements climatiques. Différentes vagues d'enquêtes nationales et internationales ont ainsi été réalisées (8 pays, taille minimale de l’échantillon 1000–1500 et échantillonnage par quota mis en oeuvre adapté à chaque pays et basé sur les données démographiques disponibles), et suivant l’évolution de la pandémie, nous avons introduit la notion de fatigue pandémique, ainsi que de fatigue climatique, afin de pouvoir mesurer l’impact de l’exposition prolongée à ces crises mondiales. Ces nouvelles données confirment nos résultats originaux : l’impact psychosocial de la pandémie est immense, en particulier en termes de fatigue pandémique, phénomène qui se retrouve à la fois au niveau comportemental et informationnel. Cette fatigue est un indicateur important à considérer afin d’améliorer notre capacité de réaction et d’adaptation à cette crise, mais également à celles futures.
-
Abstract In northern hardwood forests, tree markers select the trees to be harvested during logging operations using classification systems that assign harvest priorities based on the presence of a wide range of individual defects. According to the most recent advances in our understanding of the impact of defects on both tree vigour (the risk of mortality or decline in growth) and quality (the potential for recovering valuable sawlogs), tree markers should adopt a simpler classification system that considers fewer defects than the current operational practice, and they should prioritize the removal of trees with crown dieback. Since the probability of developing defects and dying increases substantially with tree diameter, tree markers should also favour the removal of larger trees that have maintained their quality. However, these recommendations were developed based on tree-level analyses. To provide further validation at the stand scale, we compared stand improvement and value recovery under three tree marking regimes: a new, simplified regime based on the recommendations above, and two regimes used in the province of Quebec, Canada. To do so, we conducted tree marking simulations and value recovery assessments in 14 managed stands distributed across the northern hardwood range of Quebec. Our results confirmed that the simplified tree marking regime not only facilitated stand improvement by removing a greater proportion of low-vigour trees, but also recovered significantly more value (17% on average) at the stand scale. By prioritizing the removal of trees with crown dieback, the simplified regime was superior at salvaging the current value of low-vigour trees before they die or decline in quality. Based on our results, we propose simplified and empirically-validated tree marking guidelines for northern hardwood forests.
-
The objective of this study was to verify if the consumption of different beverages (such as water, 100% pure fruit juice, and sugar-sweetened beverages (SSBs)) is associated with adolescents’ sleep quality. French-speaking adolescents were recruited in person and online throughout the province of Québec (Canada) from the end of March to early July 2023. Beverage consumption and sleep quality were measured using French versions of validated questionnaires specifically designed for adolescents. A total of 218 adolescents (14–17 years; 55.5% female) completed the online survey. Among caffeinated SSBs, energy drink (rs = −0.16; p = 0.0197) and sugar-sweetened coffee (rs = −0.33; p < 0.0001) intake was correlated with adolescents’ sleep quality. Energy drink consumption (β = −0.0048; p = 0.0005) and being male (β = 0.6033; p < 0.0001) were associated with adolescents’ sleep quality. There was an interaction between sugar-sweetened coffee intake and biological sex that was associated with adolescents’ sleep quality (p = 0.0053). Sugar-sweetened coffee consumption was correlated with adolescent girls’ abilities to go to bed (rs = −0.21; p = 0.0203) and fall asleep (rs = −0.28; p = 0.0020), while in boys, it was only significantly correlated with their abilities to go to bed (rs = −0.27; p = 0.0069). Public health interventions aimed at adolescent boys should primarily target lowering energy drink consumption, while those aimed at girls should prioritize sugar-sweetened coffee intake to possibly improve their sleep quality.
-
Purpose Disaster risk reduction is of prime importance in informal settlements in the Global South, where several forms of vulnerability coexist. Policy and official programmes, however, rarely respond to the needs and expectations of citizens and local leaders living in these settlements. Even though these agents constantly attempt to reduce risks in their own way, we know very little about their activities, motivations and effective impact on risk reduction. Here we seek to conceptualize bottom-up initiatives to better grasp their origins, limitations and success. Design/methodology/approach Through a four-year action-research project in Colombia, Cuba and Chile, we theorize about the production of change by local agents. Through detailed case studies we explored the activism of 17 local leaders. Through narrative analysis we studied their motivations and explanations. Finally, by documenting 22 initiatives, we revealed effective changes in space. Findings In the face of risk and disasters, residents and leaders in informal settings engaged in symbolic, physical and social spaces of interaction. Their actions were guided by trust, emotions, time cycles and activism. Local agency was justified by narratives about risk and climate change that differ from those of authorities and scholars. Research limitations/implications There is still limited understanding of bottom-up initiatives in informal settings. It is crucial to conceptualize their origins, limitations and success. The focus on three specific countries necessitates further research for broader applicability and understanding. Practical implications A better comprehension of bottom-up actions is crucial for informing policies and programmes aimed at reducing risk in informal settings. Stakeholders must recognize the political, social and cultural roles of these actions for more impactful climate action. Originality/value We borrow Simon’s concept of “artefact” to introduce the notion of “Artefacts of Disaster Risk Reduction”, providing insights into the multifaceted nature of bottom-up initiatives. We also emphasize the simultaneous political and phenomenological character of these actions, contributing to a deeper understanding of their origins and impact.
-
Nature-based Solutions (NbS) for coastal protection have been widely recognized as sustainable, economical, and eco-friendly alternatives to conventional grey structures, particularly under the threat of climate change (Temmerman et al., 2013). Living shorelines are a form of NbS, which incorporate natural elements (such as saltmarshes) that provide flood and erosion risk management benefits. Climate change impacts, such as rising sea levels and reducing sea-ice cover (Savard et al., 2016), are increasingly motivating communities in Canada to consider incorporating living shorelines in coastal protection schemes. The efficacy of wave energy dissipation by vegetation depends on both hydrodynamic conditions and plant characteristics. However, plant parameters, such as standing biomass exhibit seasonal fluctuations, leading to corresponding variations in attenuation capacity (Schulze et al., 2019). Hence, the design of NbS utilizing saltmarsh vegetation must account for seasonal variations to ensure sustained efficacy, especially within the context of Canadian regional climates, which are typically characterized by extended, stormy winters and shorter summer seasons. Few studies have quantified wave attenuation by real saltmarsh vegetation in large-scale laboratory facilities (Möller et al., 2014; Maza et al., 2015; Ghodoosipour et al., 2022), particularly for species native to the east coast of Canada. There is a knowledge gap on how seasonality affects wave attenuation by saltmarsh vegetation and how attenuation varies from the lower marsh to the higher marsh depending on species-specific plant traits. Research is needed to bridge this gap and develop technical guidance for the design of performant living shorelines in Canada.
-
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern Quebec, Canada, the multilayer model achieves high performances during calibration periods yet similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE values by up to 0.2 during the validation periods. The multilayer model provides more accurate estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should aim to refine the representation of snow densities to enhance the accuracy of the multilayer model. Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing a common limitation of the monolayer model.
-
Abstract Landslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi‐submerged (transitional). Semi‐submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi‐phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh‐free particle methods, such as the moving particle semi‐implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the μ ( I ) rheological model, to simulate the morphodynamic of the granular mass in semi‐submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.
-
Cette thèse explore l'adaptation urbaine au changement climatique dans les quartiers informels du Sud Global. Ce sont des lieux de grands défis et de réponses innovantes. Le contexte mondial d’exclusion postcoloniale et capitaliste entraîne la vulnérabilité et le risque supplémentaire du changement climatique augmente ces aléas contextuels. Des chercheurs ont critiqué les réponses traditionnelles en matière de planification de l’adaptation, les jugeant trop prescriptives, technologiquement dépendantes et manquant les besoins locaux. L’adaptation communautaire peut être trop isolée et axée sur les besoins des individus et des élites face à la diversité des défis locaux. Ni l’un ni l’autre ne prennent en compte les dimensions politiques de la planification de l’adaptation. En réponse, les spécialistes critiques de l’adaptation urbaine ont appelé à une meilleure compréhension des expériences locales afin de comprendre comment les gens priorisent, négocient et réagissent à une multiplicité de risques. En réponse à ces appels, ce projet cherche à mieux comprendre comment les gens perçoivent et répondent à ces défis à travers une étude de cas unique et exploratoire. Grâce à l’étude de cas qualitative dans le quartier de Panorama, situé dans la municipalité de Yumbo, en banlieue de Cali en Colombie, le projet cherche à comprendre comment l'identité et le pouvoir influencent l'accès aux ressources et aux institutions nécessaires pour s'adapter. Le projet se concentre sur deux sites de Panorama : un comité local d'aménagement soucieux de la sécurité foncière et une fondation écologique travaillant sur la conservation des espaces verts. Les résultats mettent en évidence des règles du jeu inégales où les habitants les plus vulnérables empruntent des voies parfois illégales pour accéder à la terre et au logement. Plus les résidents sont établis, plus ils bénéficient d'avantages et d'expérience pour jouer le système. Les dirigeants et les experts travaillent dur pour négocier entre les formalités. Cependant, l’absence d’un processus de planification transparent laisse divers intérêts se disputer les ressources, ce qui conduit parfois à des conflits et met fin à la créativité. Les résultats de la recherche suggèrent que la planification de l’adaptation urbaine dans les contextes informels des pays du Sud doit continuer à s’appuyer sur des recherches et des pratiques qui tiennent compte de la diversité et des conflits afin de mieux faciliter une réponse juste et équitable à la crise climatique.
-
Abstract Extreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.
-
The deterioration of anhydrite rock exposed to a freeze–thaw environment is a complex process. Therefore, this paper systematically investigated the physical and mechanical evolutions of freeze–thawed anhydrite rock through a series of multi-scale laboratory tests. Meanwhile, the correlation between pore structure and macroscopic mechanical parameters was discussed, and the deterioration mechanisms of anhydrite rock under freeze–thaw cycles were revealed. The results show that with the increase in freeze–thaw processes, the mechanical strength, elastic modulus, cohesion, proportions of micropores (r ≤ 0.1 μm), and PT-Ipore throat (0–0.1 μm) decrease exponentially. In comparison, the mass variation, proportions of mesopores (0.1 μm < r < 1 μm), macropores (r ≥ 1 μm), and PT-II pore throat (0.1–4 μm) increase exponentially. After 120 cycles, the mean porosity increases by 66.27%, and there is a significant honeycomb and pitted surface phenomenon. Meanwhile, as the freeze–thaw cycles increase, the frost resistance coefficient decreases, while the damage variable increases. The correlation analysis between pore structure and macroscopic mechanical parameters shows that macropores play the most significant role in the mechanical characteristic deterioration of freeze–thawed anhydrite rock. Finally, it is revealed that the water–rock expansion and water dissolution effects play a crucial role in the multi-scale damage of anhydrite rock under the freeze–thaw environment.
-
Abstract Run-of-river power plants (ROR) represent the majority of hydroelectric plants worldwide. Their environmental impacts are not well documented and are believed to be limited, particularly regarding the contamination of food webs by methylmercury (MeHg), a neurotoxin. RORs are typically installed in small rivers where combined effects of watershed disturbances with dam construction can complicate environmental management. We report a multi-year case study on the Saint-Maurice River (Canada) where an unpredicted temporary increase in MeHg accumulation in predator fish was observed after the construction of two ROR plants. The associated pondages acted as sedimentation basins for mercury (Hg) and organic matter from a watershed disturbed by a forest fire and by logging. This fresh organic carbon likely fueled microbial MeHg production. Hg methylation was more associated with environmental conditions than to the presence of Hg, and main methylating microbial groups were identified. A constructed wetland was a site of significant Hg methylation but was not the main source of the fish Hg increase. Organic carbon degradation was the main driver of MeHg accumulation at the base of the food chain whereas trophic levels explained the variations at the top of the food chain. Overall, carbon cycling was a key driver of Hg dynamics in this system, and ROR plants can cause temporary (ca. 12 years) Hg increase in food webs when developed in disturbed watersheds, although this increase is smaller than for large reservoirs. Recommendations for future ROR construction are to establish a good environmental monitoring plan with initial high temporal resolution and to consider recent and potential watershed disturbances in the plan.
-
To study the mechanical and cracking modes of anhydrite rock under the freeze–thaw weathering process, the physico-mechanical characteristics and morphology evolutions of anhydrite samples were determined by a series of laboratory tests. Then, a numerical simulation model was established through the PFC2D program, and the types and number of cracks during the uniaxial compression conditions were analyzed. Finally, the distribution of maximum principal stress and shear stress was revealed. The results indicate that as the number of freeze–thaw cycles increases, there is a growth in the mass loss rate and macroscopic damage variables while the uniaxial compression strength and elastic modulus decrease exponentially. Under uniaxial compression stress, the proportion of tensile cracks in the anhydrite model is the highest, followed by tensile shear cracks and compressive shear cracks. As the number of freeze–thaw cycles increases, the proportion of tensile cracks increases exponentially, while the proportion of tensile shear cracks and compressive shear cracks decreases exponentially. Furtherly, it is found that the maximum principal stress and maximum shear stress extreme values decrease exponentially with the increase of freeze–thaw cycles. For example, after 120 cycles, the maximum shear stress at the peak stress point decreased by 47.3%. The research results will promote the comprehension of anhydrite rock geotechnical engineering disaster mechanisms in cold regions.