Votre recherche
Résultats 98 ressources
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Traditional stormwater control measures are designed to handle system loadings induced by fixed-size storm events. However, climate change is predicted to alter the frequency and intensity of flooding events, stimulating the need to explore another more adaptive flooding solution like real-time control (RTC). This study assesses the performance of RTC to mitigate impacts of climate change on urban flooding resilience. A simulated, yet realistic, urban drainage system in Salt Lake City, Utah, USA, shows that RTC improves the flooding resilience by up to 17% under climatic rainfall changes. Compared with green stormwater infrastructure (GSI), RTC exhibits a lower resistibility, lower flooding failure level, and higher recovery rate in system performance curves. Results articulate that keeping RTC's performance consistent under ‘back-to-back’ storms requires a tradeoff between upstream dynamical operation and downstream flooding functionality loss. This research suggests that RTC provides a path towards smart and resilient stormwater management strategy.
-
Les inondations de 2017 et 2019 au Québec ont affecté respectivement 293 et 240 municipalités. Ces inondations ont généré une cascade d’évènements stressants (stresseurs primaires et secondaires) qui ont eu des effets sur la santé mentale de la population et retardé le processus de rétablissement des individus. Cette période de rétablissement peut s’échelonner sur plusieurs mois voire plusieurs années. Cette étude s’inscrit dans la spécificité de la recherche mixte mise de l’avant à travers trois stratégies de recherche, réalisées de façon séquentielle : 1) sondage populationnelle réalisé auprès de 680 personnes, 2) analyse de documents produits par les organisations participant au processus de rétablissement social des sinistrés, ou sur des analyses externes portant sur ces interventions de rétablissement et 3) entrevues semi-dirigées auprès de 15 propriétaires occupants ayant complété une demande d’indemnisation à la suite des inondations de 2019 et auprès de 11 professionnels et gestionnaires participant au processus de rétablissement social. Les entrevues semi-dirigées et les questionnaires complétés par les personnes sinistrées lors des inondations de 2019 démontrent que les principales sources de stress ayant des impacts sur la santé et le bien-être des répondants sont : 1) l’absence d’avertissement et la vitesse de la montée des eaux; 2) l’obligation de se relocaliser et la peur d’être victime de pillage; 3) le manque de solidarité et d’empathie de la part de certains employés du MSP; 4) la gestion des conflits familiaux; 5) la gestion de problèmes de santé nouveaux ou préexistants; 6) la complexité des demandes d’indemnisation; 7) la lourdeur et les délais des travaux de nettoyage ou de restauration; 8) les indemnités inférieures aux coûts engendrés par l’inondation; 9) les pertes matérielles subies, particulièrement ceux d’une valeur de plus de 50 000 $; et 10) la diminution anticipée de la valeur de sa résidence. À cela s’ajoute l’insatisfaction à l’égard du programme d’indemnisation du gouvernement du Québec (PGIAF) qui fait plus que doubler la prévalence des symptômes de stress post-traumatique. Les inondations entraînent également une perte de satisfaction ou de bien-être statistiquement significative. La valeur monétaire de cette perte de jouissance peut être exprimée en équivalent salaires. En moyenne, cette diminution du bien-être équivaut à une baisse de salaire de 60 000$ pour les individus ayant vécu une première inondation et à 100 000$ pour les individus ayant vécu de multiples inondations. Ces résultats suggèrent que les coûts indirects et intangibles représentent une part importante des dommages découlant des inondations. Ce projet de recherche vise également à analyser l’application du PGIAF et son influence sur les stresseurs vécus par les sinistrés dans le contexte de la pandémie de COVID-19. La principale recommandation de cette étude repose sur une analyse de documents, un sondage populationnel et des entrevues semi-dirigées. Ainsi, s’attaquer à la réduction de principaux stresseurs nécessite 1) d’améliorer la gouvernance du risque d’inondation, 2) d’intensifier la communication et le support aux sinistrés, et 3) de revoir les mécanismes d’indemnisation existants.
-
Abstract Measuring freshwater submerged aquatic vegetation (SAV) biomass at large spatial scales is challenging, and no single technique can cost effectively accomplish this while maintaining accuracy. We propose to combine and intercalibrate accurate quadrat‐scuba diver technique, fast rake sampling, and large‐scale echosounding. We found that the overall relationship between quadrat and rake biomass is moderately strong (pseudo R 2 = 0.61) and varies with substrate type and SAV growth form. Rake biomass was also successfully estimated from biovolume (pseudo R 2 = 0.57), a biomass proxy derived from echosounding. In addition, the relationship was affected, in decreasing relevance, by SAV growth form, flow velocity, acoustic data quality, depth, and wind conditions. Sequential application of calibrations yielded predictions in agreement with quadrat observations, but echosounding predictions underestimated biomass in shallow areas (< 1 m) while outperforming point estimation in deep areas (> 3 m). Whole‐system quadrat‐equivalent biomass from echosounding differed by a factor of two from point survey estimates, suggesting echosounding is more accurate at larger scales owing to the increased sample size and better representation of spatial heterogeneity. To decide when an individual or a combination of techniques is profitable, we developed a step‐by‐step guideline. Given the risks of quadrat‐scuba diver technique, we recommend developing a one‐time quadrat–rake calibration, followed by the use of rake and echosounding when sampling at larger spatial and temporal scales. In this case, rake sampling becomes a valid ground truthing method for echosounding, also providing valuable species information and estimates in shallow waters where echosounding is inappropriate.
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
According to Department of Fisheries and Oceans Canada, culverts and other stream crossings must be designed to ensure fish passage. The effects of ice processes on these fish passage designs have never been assessed. This study is the first to document ice processes on two different types of fish passage designs (streambed simulation and baffle). The results of a 2 year field monitoring campaign showed that the culvert simulating the streambed retains a natural ice regime, i.e., both freeze-up and break-up occurred concurrently with the rest of the stream, while multiple supercooling events were recorded under a thin ice cover. As for the culvert with baffles, it was observed that the ice cover formed earlier and stayed longer in the culvert, which can create a barrier for fish transiting through them.
-
Abstract. Efficient adaptation strategies to climate change require the estimation of future impacts and the uncertainty surrounding this estimation. Over- or underestimating future uncertainty may lead to maladaptation. Hydrological impact studies typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to the climate model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of “model democracy”, in which each climate model is considered equally fit. The newer Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, with several models showing a climate sensitivity larger than that of Phase 5 (CMIP5) and larger than the likely range based on past climate information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that “hot” models be removed from impact studies to avoid skewing impact results toward unlikely futures. Indeed, the inclusion of these models in impact studies carries a significant risk of overestimating the impact of climate change. This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3107 North American catchments. More precisely, the variability in future projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 general circulation models (GCMs), 5 of which are deemed hot based on their global equilibrium climate sensitivity (ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced future variability for Canada, Alaska, the Southeast US, and along the Pacific coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability in future streamflow, indicating that global outlier climate models do not necessarily provide regional outlier projections of future impacts. These results emphasize the delicate nature of climate model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.
-
The Hudson Bay basin is a large contributor of freshwater input in the Arctic Ocean and is also an area affected by destructive spring floods. In this study, the hydrological model MESH (Modelisation Environmentale Communautaire - Surface and hydrology) was set up for the Groundhog River watershed situated in the Hudson Bay basin, to simulate the future evolution of streamflow and annual maximum streamflow. MESH was forced by meteorological data from ERA5 reanalyses in the historical period (1979–2018) and 12 models of the Coupled model intercomparison Project Phase 5 (CMIP5) downscaled with the Canadian Regional Climate model version 5 (CRCM5) in historical (1979–2005) and scenario period (2006–2098). The projections consistently indicate an earlier spring flow and a reduction in the amount of annual maximum streamflow by the end of the 21st century. Under the RCP8.5 scenario, the annual maximum streamflow occurring in the spring is expected to be advanced by 2 weeks and reduced on average from 852 m3/s (±265) in the historical period (1979–2018) to 717m3/s (±250) by the end of the 21st century (2059–2098). Because the seasonal projection of streamflow was not investigated in previous studies, this work is an important first step to assess the seasonal change of streamflow in the Hudson Bay region under climate change.
-
Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which often triggers floods. It is important to have spatial information about snow parameters such as snow water equivalent (SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information; thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization since the overall water balance is often a key objective in the hydrological modelling. The present research implements a unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to determine whether raw SNODAS data can be utilized for hydrological model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-5 land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived Multi-Objective Optimization (PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of model performance. Traditional model calibration involving only streamflow produced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration framework results in a more robust hydrological model.
-
Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.
-
Abstract. The amount and phase of cold season precipitation accumulating in the upper Saint John River basin are critical factors in determining spring runoff, ice-jams, and flooding in downstream communities. To study the impact of winter and spring storms on the snowpack in the upper Saint John River (SJR) basin, the Saint John River Experiment on Cold Season Storms (SAJESS) utilized meteorological instrumentation, upper air soundings, human observations, and hydrometeor macrophotography during winter/spring 2020–21. Here, we provide an overview of the SAJESS study area, field campaign, and existing data networks surrounding the upper SJR basin. Initially, meteorological instrumentation was co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick, in early December 2020. This was followed by an intensive observation period that involved manual observations, upper-air soundings, a multi-angle snowflake camera, macrophotography of solid hydrometeors, and advanced automated instrumentation throughout March and April 2021. The resulting datasets include optical disdrometer size and velocity distributions of hydrometeors, micro rain radar output, near-surface meteorological observations, and wind speed, temperature, pressure and precipitation amounts from a K63 Hotplate precipitation gauge, the first one operating in Canada. These data are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2022). We also include a synopsis of the data management plan and data processing, and a brief assessment of the rewards and challenges of utilizing community volunteers for hydro-meteorological citizen science.
-
The magnitudes of dissolved organic carbon (DOC) exports from boreal peatlands to streams through lateral subsurface flow vary during the ice-free season. Peatland water table depth and the alternation of low and high flow in peat-draining streams are thought to drive this DOC export variability. However, calculation of the specific DOC exports from a peatland can be challenging considering the multiple potential DOC sources within the catchment. A calculation approach based on the hydrological connectivity between the peat and the stream could help to solve this issue, which is the approach used in the present research. This study took place from June 2018 to October 2019 in a boreal catchment in northeastern Canada, with 76.7 % of the catchment being covered by ombrotrophic peatland. The objectives were to (1) establish relationships between DOC exports from a headwater stream and the peatland hydrology; (2) quantify, at the catchment scale, the amount of DOC laterally exported to the draining stream; and (3) define the patterns of DOC mobilization during high-river-flow events. At the peatland headwater stream outlet, the DOC concentrations were monitored at a high frequency (hourly) using a fluorescent dissolved organic matter (fDOM) sensor, a proxy for DOC concentration. Hydrological variables, such as stream outlet discharge and peatland water table depth (WTD), were continuously monitored at hourly intervals for 2 years. Our results highlight the direct and delayed control of subsurface flow from peat to the stream and associated DOC exports. Rain events raised the peatland WTD, which increased hydrological connectivity between the peatland and the stream. This led to increased stream discharge (Q) and a delayed DOC concentration increase, typical of lateral subsurface flow. The magnitude of the WTD increase played a crucial role in influencing the quantity of DOC exported. Based on the observations that the peatland is the most important contributor to DOC exports at the catchment scale and that other DOC sources were negligible during high-flow periods, we propose a new approach to estimate the specific DOC exports attributable to the peatland by distinguishing between the surfaces used for calculation during high-flow and low-flow periods. In 2018–2019, 92.6 % of DOC was exported during flood events despite the fact that these flood events accounted for 59.1 % of the period. In 2019–2020, 93.8 % of DOC was exported during flood events, which represented 44.1 % of the period. Our analysis of individual flood events revealed three types of events and DOC mobilization patterns. The first type is characterized by high rainfall, leading to an important WTD increase that favours the connection between the peatland and the stream and leading to high DOC exports. The second is characterized by a large WTD increase succeeding a previous event that had depleted DOC available to be transferred to the stream, leading to low DOC exports. The third type corresponds to low rainfall events with an insufficient WTD increase to reconnect the peatland and the stream, leading to low DOC exports. Our results suggest that DOC exports are sensitive to hydroclimatic conditions; moreover, flood events, changes in rainfall regime, ice-free season duration, and porewater temperature may affect the exported DOC and, consequently, partially offset the net carbon sequestration potential of peatlands.
-
As Earth's atmospheric temperatures and human populations increase, more people are becoming vulnerable to natural and human-induced disasters. This is particularly true in Central America, where the growing human population is experiencing climate extremes (droughts and floods), and the region is susceptible to geological hazards, such as earthquakes and volcanic eruptions, and environmental deterioration in many forms (soil erosion, lake eutrophication, heavy metal contamination, etc.). Instrumental and historical data from the region are insufficient to understand and document past hazards, a necessary first step for mitigating future risks. Long, continuous, well-resolved geological records can, however, provide a window into past climate and environmental changes that can be used to better predict future conditions in the region. The Lake Izabal Basin (LIB), in eastern Guatemala, contains the longest known continental records of tectonics, climate, and environmental change in the northern Neotropics. The basin is a pull-apart depression that developed along the North American and Caribbean plate boundary ∼ 12 Myr ago and contains > 4 km of sediment. The sedimentological archive in the LIB records the interplay among several Earth System processes. Consequently, exploration of sediments in the basin can provide key information concerning: (1) tectonic deformation and earthquake history along the plate boundary; (2) the timing and causes of volcanism from the Central American Volcanic Arc; and (3) hydroclimatic, ecologic, and geomicrobiological responses to different climate and environmental states. To evaluate the LIB as a potential site for scientific drilling, 65 scientists from 13 countries and 33 institutions met in Antigua, Guatemala, in August 2022 under the auspices of the International Continental Scientific Drilling Program (ICDP) and the US National Science Foundation (NSF). Several working groups developed scientific questions and overarching hypotheses that could be addressed by drilling the LIB and identified optimal coring sites and instrumentation needed to achieve the project goals. The group also discussed logistical challenges and outreach opportunities. The project is not only an outstanding opportunity to improve our scientific understanding of seismotectonic, volcanic, paleoclimatic, paleoecologic, and paleobiologic processes that operate in the tropics of Central America, but it is also an opportunity to improve understanding of multiple geological hazards and communicate that knowledge to help increase the resilience of at-risk Central American communities.
-
Hydrological time series often present nonstationarities such as trends, shifts, or oscillations due to anthropogenic effects and hydroclimatological variations, including global climate change. For water managers, it is crucial to recognize and define the nonstationarities in hydrological records. The nonstationarities must be appropriately modeled and stochastically simulated according to the characteristics of observed records to evaluate the adequacy of flood risk mitigation measures and future water resources management strategies. Therefore, in the current study, three approaches were suggested to address stochastically nonstationary behaviors, especially in the long-term variability of hydrological variables: as an overall trend, shifting mean, or as a long-term oscillation. To represent these options for hydrological variables, the autoregressive model with an overall trend, shifting mean level (SML), and empirical mode decomposition with nonstationary oscillation resampling (EMD-NSOR) were employed in the hydrological series of the net basin supply in the Lake Champlain-River Richelieu basin, where the International Joint Committee recently managed and significant flood damage from long consistent high flows occurred. The detailed results indicate that the EMD-NSOR model can be an appropriate option by reproducing long-term dependence statistics and generating manageable scenarios, while the SML model does not properly reproduce the observed long-term dependence, that are critical to simulate sustainable flood events. The trend model produces too many risks for floods in the future but no risk for droughts. The overall results conclude that the nonstationarities in hydrological series should be carefully handled in stochastic simulation models to appropriately manage future water-related risks.
-
Research in hydrological sciences is constantly evolving to provide adequate answers to address various water-related issues. Methodological approaches inspired by mathematical and physical sciences have shaped hydrological sciences from its inceptions to the present day. Nowadays, as a better understanding of the social consequences of extreme meteorological events and of the population’s ability to adapt to these becomes increasingly necessary, hydrological sciences have begun to integrate knowledge from social sciences. Such knowledge allows for the study of complex social-ecological realities surrounding hydrological phenomena, such as citizens’ perception of water resources, as well as individual and collective behaviors related to water management. Using a mixed methods approach to combine quantitative and qualitative approaches has thus become necessary to understand the complexity of hydrological phenomena and propose adequate solutions for their management. In this paper, we detail how mixed methods can be used to research flood hydrology and low-flow conditions, as well as in the management of these hydrological extremes, through the analysis of case studies. We frame our analysis within the three paradigms (positivism, post-positivism, and constructivism) and four research designs (triangulation, complementary, explanatory, and exploratory) that guide research in hydrology. We show that mixed methods can notably contribute to the densification of data on extreme flood events to help reduce forecasting uncertainties, to the production of knowledge on low-flow hydrological states that are insufficiently documented, and to improving participatory decision making in water management and in handling extreme hydrological events.
-
Abstract Interdisciplinary research is considered a source of innovativeness and creativity, serving as a key mechanism for creating recombination necessary for the evolution of science systems. The aim of this study is to quantitatively establish the connection between interdisciplinary research and the research fronts that have recently emerged in civil engineering. The degree of interdisciplinarity of the research fronts was measured by developing metrics from bibliographic analyses. As indicated by the consistent increase in the metrics of interdisciplinarity over time, research fronts tend to emerge in studies with increasing diversity in the disciplines involved. The active disciplines involved in the fronts vary over time. The most active disciplines are no longer fundamental but those associated with energy, environment, and sustainable development, focusing on solutions to climate change and integrating intelligence technologies.