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Abstract
Measuring freshwater submerged aquatic vegetation (SAV) biomass at large spatial scales is challenging, and

no single technique can cost effectively accomplish this while maintaining accuracy. We propose to combine
and intercalibrate accurate quadrat-scuba diver technique, fast rake sampling, and large-scale echosounding. We
found that the overall relationship between quadrat and rake biomass is moderately strong (pseudo R2 = 0.61)
and varies with substrate type and SAV growth form. Rake biomass was also successfully estimated from
biovolume (pseudo R2 = 0.57), a biomass proxy derived from echosounding. In addition, the relationship was
affected, in decreasing relevance, by SAV growth form, flow velocity, acoustic data quality, depth, and wind con-
ditions. Sequential application of calibrations yielded predictions in agreement with quadrat observations, but
echosounding predictions underestimated biomass in shallow areas (< 1 m) while outperforming point estima-
tion in deep areas (> 3 m). Whole-system quadrat-equivalent biomass from echosounding differed by a factor of
two from point survey estimates, suggesting echosounding is more accurate at larger scales owing to the
increased sample size and better representation of spatial heterogeneity. To decide when an individual or a com-
bination of techniques is profitable, we developed a step-by-step guideline. Given the risks of quadrat-scuba
diver technique, we recommend developing a one-time quadrat–rake calibration, followed by the use of rake
and echosounding when sampling at larger spatial and temporal scales. In this case, rake sampling becomes a
valid ground truthing method for echosounding, also providing valuable species information and estimates in
shallow waters where echosounding is inappropriate.

Submerged aquatic vegetation (SAV) provides many aquatic
ecosystem functions and services, from stabilizing sediments
to maintaining critical habitat for fauna (Carpenter and
Lodge 1986; Hilt et al. 2017). Ecosystem service provisioning
by SAV meadows is dependent both on plant patch density

and size where high elemental fluxes and faunal populations
are associated with high SAV standing stock (Cyr and Down-
ing 1988; Rooney et al. 2003; Brown et al. 2004). However,
SAV standing stock is sensitive to human pressures with, for
example, declining SAV abundance in shallow lakes mainly
reflecting loss of water transparency caused by increasing
eutrophication (Scheffer et al. 1993). Management efforts
around SAV thus often attempt to restore abundant meadows,
while invasive alien aquatic “weeds” that impede multiple
water usages are typically actively removed (Hussner
et al. 2017; Madsen and Wersal 2017). Regardless of the man-
agement needs, accurate estimates of SAV standing stock are
essential to assess their overall functional role in ecosystems
and whether management strategies are working.

SAV standing stock or standing biomass is the density mea-
sure of aboveground living plant material in mass per unit area.
Biomass can be either measured using destructive removal tech-
niques or estimated using remote sensing (Fig. 1a). Destructive
techniques consist of harvesting plant material, either from
below or above the water surface. These are measures of direct
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biomass, as opposed to a proxy, and represent SAV biomass spa-
tially as a point phenomenon. Direct underwater harvest of
SAV by scuba divers is the biomass measure with the least bias
(Downing and Anderson 1985; Madsen 1993). It is thus the
most accurate biomass measure and also has the advantage of
being applicable at all depths. However, this technique requires
specialized scuba training. In addition, because of long collec-
tion time, small quadrat size (< 1 m2), and the associated safety
risks and expenses, sampling of large areas or in turbid waters is
not possible. To alleviate these shortcomings, destructive tech-
niques using tools to grab samples from the surface have been
developed. Multiple tools exist, but the double-headed rake
with a variety of assembly features (on a telescopic pole, tongs
or rope) and collection methods (dragged, griped or spun) is
rather well adapted for use in large surveys (Rodusky
et al. 2005; Johnson and Newman 2011; Yin and Kreiling 2011;
Madsen and Wersal 2017). Indeed, the rake is convenient for
large-scale recurrent SAV sampling due to its low purchase cost,
ease of use, fast collection, robustness, and simple maintenance.
However, rake collection is restricted to shallow depths (< 3–
4 m) and is biased since plant material is often not entirely col-
lected or collected in excess (Rodusky et al. 2005; Kenow
et al. 2007; Johnson and Newman 2011). Furthermore, all
destructive methods are point measurements and require the
collection and processing of multiple replicates to reach a rea-
sonably precise estimation at a given site due to the typical pat-
chy distribution of SAV meadows at small scale (Downing and
Anderson 1985). Accurate measurements of SAV biomass cap-
turing SAV heterogeneity at larger spatial scales thus remain a
challenge, since surveys using quadrats are accurate but only

applicable at small scale whereas rake samples are more biased
but provide a broader estimate of biomass distribution.

At large spatial scales, SAV biomass estimates can be
improved with remote sensing that represent SAV in space as a
continuous surface phenomenon. These techniques provide a
proxy of biomass where SAV is detected by a receiver that cap-
tures a signal (e.g., sound or light) reflected or emitted by SAV
(Rowan and Kalacska 2021). Capturing the sound reflection
made by gas vacuoles in plant tissue (the echo) using an active
single beam echosounder, is the simplest and best remote
sensing technique to estimate SAV biomass in turbid freshwaters
(Duarte 1987; Sabol et al. 2002; Vis et al. 2003; Rowan
and Kalacska 2021). Indeed, echosounders are transportable and
increasingly affordable devices that, just like a sonar used
for fishing, can be hooked on the side of a boat for a rapid, non-
destructive and repeatable survey (Howell and Richardson 2019).
The reflection of sound on bottom surfaces and canopies allows
for the simultaneous measurement of SAV height and water
depth, which is extremely useful as water depth strongly influ-
ences SAV biomass (Duarte and Kalff 1990). Because SAV height
correlates to biomass, echosounding has successfully been used
to model whole community biomass (Maceina et al. 1984;
Duarte 1987; Sabol et al. 2002). However, the allometric rela-
tionship between height and biomass varies with species growth
form and thus the calibration of SAV echo is species- or stand-
specific and as such the measurement needs to be repeated fre-
quently (Duarte 1987). Other drawbacks of echosounding
include its lack of species differentiation, inability to take mea-
surements in very shallow waters (< 0.4–0.7 m) or when plants
reach water surface, and obligate sampling during calm weather
conditions, since wind-induced gas bubbles strongly scatter

a

b
Q–R R–E

two-step

Fig. 1. Comparison and combination of the quadrat, rake, and echosounding techniques to estimate SAV biomass. (a) Strengths and weaknesses of the
different techniques. (b) Approach and steps to combine techniques. Q, quadrat; R, rake.
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sound (Sabol et al. 2002). Furthermore, the use of echosounding
requires technical expertise, from maneuvering the instrument,
electronic maintenance to processing data output.

Each of the aforementioned techniques has several advan-
tages and disadvantages for estimating SAV biomass depending
on the scale of study (Fig. 1a). One promising approach would
be to design a process enabling the benefits of all three tech-
niques which could provide accurate biomass estimates that
take SAV heterogeneity at broad spatial scales into account.
Therefore, our objective is to develop a process that assesses the
interchangeability of quadrat, rake, and echosounding tech-
niques to render their use synergistic and both time and cost-
effective. To do so, we conducted two intercalibrations: one
between biomass from quadrat and rake and the other between
rake and a biomass proxy derived from echosounding (Fig. 1b).
Furthermore, we investigated how the predictions of both inter-
calibrations models are affected by environmental factors. The
resulting two models were then sequentially applied to
echosounding data to validate our approach. Finally, we
assessed how increasing the sample size using echosounding
modifies whole-system biomass estimation and provide a
decision-making tool adapting the methods to study purpose.

Materials and procedures
To compare, and integrate the different biomass assessment

techniques, three datasets were used: the quadrat–rake (Q–R), the
rake–echosounding (R–E), and the validation datasets (Table 1).
All datasets were collected in Lake Saint-Pierre (LSP), a � 300 km2

widening of the Saint-Lawrence River in Quebec, Canada (Fig. 2a,
b). Part of the Q–R dataset was also collected in the nearby
upstream fluvial lakes, Saint-Louis and Saint-François.

Q–R dataset
The first dataset was used to assess the correspondence

between biomass estimates derived from quadrat and rake sam-
ples. We had to compare destructive techniques that were mea-
sured on distinctively sampled area but representative of the
same site. Given that at the time of the sampling such a compar-
ison had yet to be done, we tested three different collection
strategies: systematic pairs, haphazard pairs or blocks (Fig. 2c).
For the first two strategies, paired rake and quadrat samples were
collected around the anchored boat, using either a systematic or
a haphazard strategy. In the “systematic pair” strategy, a single
quadrat (0.25 m � 0.25 m) was systematically collected to the
upper right side of each rake sample (1 m � 0.35 m). In the
“haphazard pair” strategy, bigger quadrats (0.40 m � 0.60 m)
were located in the vicinity of the rake sample site. In the block
sampling strategy, a block, which consisted of two rake samples
positioned on both sides of a row of four individual quadrats
(0.25 m � 0.35 m each) aligned to mimic the raked area, was
collected on each side of the boat.

Quadrat plant samples were harvested by divers from
within a polyvinyl chloride (PVC) frame placed on the lake

bottom by divers. All aboveground plant material was cut
using grass-clippers or broken at the sediment surface. Rake
samples were collected from the anchored boat, using a
double-headed rake (0.35-m head width with 14, 8-cm long
teeth on both sides) mounted on a telescopic pole (maximum
length 5 m) following the method described by Yin and
Kreiling (2011). The rake was lowered in the water and
dragged toward the boat over the bottom on a length of
approximately 1 m. As it was lifted from the water, the rake
was flipped 180� to minimize plant loss.

Biomass samples were collected during the period of maxi-
mum SAV development during the summers of 2006–2009.
Sites were chosen to cover a wide range of water depths, sedi-
ment types, and SAV biomass. Water depth at each site was
measured with a survey ruler and sediment type was classified
as pebble, sand, silt, clay, or a mixture thereof. SAV species
composition of each sample was visually assessed in decreas-
ing abundance rank (1 = most abundant species). Plant mate-
rial was washed on site to remove sediment and debris prior to
further processing (on site, in the laboratory on fresh or
thawed samples). Macrophytes (vascular plants and macro-
algae such as Nitella and Chara spp.) were separated from fila-
mentous algal mats (Chlorophytes or the cyanobacterium
Microseira (Lyngbya) wollei); each group was wrung out manu-
ally and either weighted with a hook-scale on site (precision
0.02 kg) or an electronic scale in the laboratory (precision
0.1 g). A subsample of filamentous algae was preserved in
lugol for subsequent microscopic identification (�250). Wet
mass was converted to dry mass using previously established
conversion factors for SAV (Hudon et al. 2012) and filamen-
tous species (Cattaneo et al. 2013). All of the manipulations
from sample collection to final biomass conversion are
referred to “biomass treatments.”

Both biomass and species information were aggregated per
site. Biomass measurements were reported as a mean of 3–5
rake and quadrat replicates for the systematic and haphazard
pair collection strategies or on two rakes and four quadrats for
the block collection strategy. Species information per replicate
sample was converted to dominant growth form type as either
species forming dense canopy, short understory species or spe-
cies with leaves growing from a basal rosette, using the domi-
nant species only (rank 1). Canopy-forming plants (< 3 m)
included mainly Potamogeton richardsonii but also Heteranthera
dubia, Stuckenia pectinata, Elodea spp., and Myriophyllum spp.
Chara spp. formed a low-lying (< 20 cm) layer on the bottom,
while Vallisneria americana formed rosette of linear leaves
extending toward the surface (< 1.5 m). When more than half
of the replicates at a given site had the same dominant growth
form, that growth form was allocated to the site.

R–E dataset
The second dataset was used to predict rake biomass from

echosounding. Both acoustic and rake surveys were carried
out in the southwest portion of LSP once a year from 2012 to
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2017 during the moment of maximum biomass, but also once
early in the growing season in June 2012 (Fig. 2b,d). Acoustic
surveys were conducted on 250-m-spaced transects perpendic-
ular to the lake shore at low and constant speed (� 1.1 m s�1).
Acoustic data were collected using a downward-looking Bio-
Sonics single beam transducer mounted on an Ocean Science
riverboat fixed to the side of the vessel by a steel rod. This set-
up allowed the transducer to be constantly immersed below
5 cm of the water surface. Floating and drifting vegetation fre-
quently became entangled with the transducer, which conse-
quently was regularly cleaned. The transducer had a beam
angle of 6.6� and a working frequency of 430 kH, which
depending on water depth, represents a circle of 0.10 to
0.20 m cone diameter of sound reaching the sediment surface.
Echosounding was controlled by a BioSonics DTX system run-
ning Visual Acquisition 6.06 with a pulse length of 0.1 ms and

a ping rate of 5 ping s�1. Geolocation data were simulta-
neously recorded with a GNSS NovAtel Smart V1 receiver
placed on top of the transducer. Real-time differential correc-
tion was obtained using the Omnistar VBS network in 2012
and 2013 (0.90 m precision) and the WAAS network in 2014–
2017 (0.65 m precision). Acoustic data (echograms and geo-
graphic coordinates) were saved in dt4 files on a laptop PC for
postprocessing.

Acoustic data were processed using Visual Habitat 1. Lake
bottom was first determined using a rising edge threshold of
�47 dB and a rising edge length criterion of 10 cm. The
resulting delineations on the echograms were manually
corrected to have a bottom line following highest amplitudes.
SAV was subsequently analyzed using plant detection thresh-
old above ambient noise of �68 dB and a minimum height of
plant detection of 10 cm. SAV delineations were again

Table 1. Summary of the three datasets used in this study.

Q–R Rake–echo Validation

Location LSP 46�090N 72�520W
LSL 45�240N 73�540W
LSF 45�080N 74�210W

LSP 46�090N 72�520W LSP 46�090N 72�520W
LSP 46�130N 72�530W

Year 2006–2009 2012–2017 2013, 2016

Time of biomass collection Jul, Aug, Sep 26–28 Jun (2012 only)

27 Jul to 17 Aug

13–16 Aug 2013

16–25 Aug 2016

Time of echosounding 18–20 Jun (2012 only)

27 Jul to 15 Aug

12–13 Aug 2013

3–4 Aug 2016 and

01–02 Sep 2016

Biomass treatment Fresh and frozen/thawed Frozen/thawed Frozen/thawed and fresh

Species identification Visual abundance rank Biomass per species Biomass per species

Type of comparison 3 dispositions systematic pair,

haphazard pair, block

Constant distance to rake station Constant distance to

quadrat station

Number of biomass site 77 217 105

Size of the quadrat sampling unit (m) 0.25 � 0.25

0.40 � 0.60

0.25 � 0.35

0.25 � 0.25

0.30 � 0.30

(at low SAV density 1–100 m2)

Size of the rake sampling unit (m) 0.35 � 1 0.35 � 1

Biomass replicates per site 3–5 or 2–4 3–5 3

Variables used in analysis Quadrat biomass

Rake biomass

Collection strategy

Biomass treatment

Lake

Substrate type

Depth

Growth form

Rake biomass

Biovolume

Biovolume SD

Depth

Growth form

Chlorophyte biomass

Microseira (Lyngbya) wollei biomass

Number of ping report

Mean distance to rake site

Flow velocity

Wind speed

Wind direction

Quadrat biomass

Biovolume

Biovolume SD

Depth

LSF, Lake Saint-François; LSL, Lake Saint-Louis.
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manually corrected when the plant line was going beneath
the bottom line, mainly due to false detection of plants
reaching the water surface. Invalid ping reports were removed,
and remaining reports were exported for cycles of five pings to
have a sample resolution similar to the raked length and a
data point every � 1.1 m. For each cycle, mean plant height
(m), plant cover (%), mean geographic position (decimal
degree), and mean depth (m) were exported. SAV biovolume,
a potential proxy of SAV biomass, was computed as mean
plant height � mean plant cover.

Within 1–2 weeks of the acoustic surveys, rake samples
were collected at 35 sites along the echosounding transects.
Sites were positioned using a Trimble GeoXT (precision
0.50 m) in 2012–2013, a SXBlue II GPS (precision 0.65 m) in
2014–2015, and a Garmin 64 S (precision 3 m) in 2016 and
2017. Water depth (z) was measured with a survey ruler and,
to be comparable with depth during echosounding, was
corrected using the equation z = zrake – lvldate rake + lvldate echo

and water level (lvl) at station 15975 (Fisheries and Ocean
Canada, www.isdm-gdsi.ca, accessed 27 November 2017).
Depth average flow velocity was also measured at the time of
or one week prior to biomass sampling. Velocity was measured
at 60% of site depth using a rotating (Swoffer 3000) or

electromagnetic (Marsh McBirney Flo-mate 2000 or Valeport
model 801) flowmeter. At each site, 3–5 rake replicates were col-
lected around the anchored, 7-m long boat, using the same
apparatus and dragged length as the Q–R dataset. To ensure
that a location was not raked twice, rakes were systematically
collected in front and on each side of the boat and as distant as
possible when replicate number exceeded three. Plant material
was similarly processed as described for the Q–R dataset, but
plants were sorted by species in the lab and macrophyte bio-
mass was measured on dried material. Total SAV biomass was
computed from the species biomass and pooled by growth
form. The same species as the Q–R dataset were found. All SAV
biomass herein are reported as mean dry biomass in g m�2.

Since rake collection and echosounding of the same SAV
sites were conducted independently, we determined the spa-
tial resolution at which they could be compared by inspecting
the relationship between rake biomass and mean biovolume
at increasing radial distance from the rake site (see Supporting
Information Text S1; Fig. S1). We performed this comparison
at radial distances ranging from 1 to 100 m (Fig. 2d), and a res-
olution of 20 m (or 10-m radius around rake site) was selected
based on an observed higher correlation with field observa-
tions. Using the 20 m resolution, we calculated the biovolume

Fig. 2. (a) Sampling locations in the St. Lawrence River for the Q–R dataset; (b) R–E and validation (echosounding–quadrat) datasets in Lac Saint-Pierre.
(c) collection strategy to compare quadrat to rake; (d) collection strategy to compare rake to echosounding. For the R–E dataset in (b), 2014 rake sam-
pling sites and echosounding tracks are shown as an example (South-West sector). To clearly visualize the validation dataset in (b), all the 2016 quadrats
(blue diamonds) are depicted but only part of the 2016 echosounding tracks (North section, South-West tracks are similar to R–E dataset) and the general
location of the 2013 small scale sampling (yellow square, South-West sector) are shown.
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standard deviation (SD) as an indicator of the acoustic error,
the mean ping report distance to rake site as the acoustic prox-
imity, and the number of ping reports per site as the acoustic
frequency.

Validation dataset
The third dataset was used to validate biomass estimation

from echosounding and compare it to quadrat biomass.
Acoustic and quadrat surveys were carried at the time of maxi-
mum biomass accumulation in 2013 and in 2016. In 2013,
the survey was concentrated in a small (100 m � 100 m) area
of high biomass in southwest LSP characterized by a narrow
depth range (1.4–1.5 m; Fig. 2b). In 2016, the survey was con-
ducted in both the southwest and the northern sector of LSP.
The northern sector was characterized by greater depth range
(0.5–7.0 m). Quadrat sampling in this sector was carried in five
transects and the 250 m-spaced echosounding transects were
perpendicular to the quadrat transects. The southwest sector
had shallower depths (< 2.7 m), and echosounding transects
were selected following the same methodology as described
for the R–E datasets. Processing of acoustic data and biomass
samples were also conducted similarly to the R–E dataset, but
aboveground biomass was collected in triplicates by scuba
divers using a 0.30 m � 0.30 m quadrat in 2013, a
0.25 m � 0.25 m quadrat in 2016, and balance precision was
0.0004 kg. When SAV density was very low, divers evaluated
the surface they patrolled without plants as a straight line or a
circle around the anchor (up to 100 m2) and collected the few
plants they found. Quadrat and echosounding were spatially
matched using the same resolution of 20 m determined from
the R–E dataset.

Statistical analysis
To predict quadrat biomass from rake biomass, we con-

ducted two distinct analyses with different purposes. First, to
derive mean parameter estimates while allowing for a hierar-
chical structure, we used linear mixed modeling (LMM) with
Gaussian error. Only rake biomass was included as the fixed
effect, and the random terms were date and sampling site. The
random effect models were fitted with restricted maximum
likelihood estimation and selected to minimize the sample-
corrected Akaike information criterion (AICc) following the
approach of Zuur et al. (2009). To assure the selected model
captured spatial autocorrelation, absence of correlation was
assessed by looking at correlograms of model residuals. Sec-
ond, we investigated how environmental variables affected
the rake and quadrat biomass relationship. The intention was
to indicate which variable should be controlled for or included
in the intercalibration to reach a higher accuracy. Given that
available variables were mostly categorical (collection strategy,
biomass treatment, lake, substrate type, and growth form,
Table 1), we tested this using analysis of covariance
(ANCOVA). When the relationship between quadrat and rake
biomass exhibited different slopes and intercepts for a given

condition, separate regression equations were computed for
each category using ordinary least square regression. We also
evaluated the effect of depth on the quadrat–rake biomass
relationship using partial regression.

We applied a similar two-analysis approach to predict rake
biomass from echosounding biovolume. LMM was used to
derive mean parameter estimates, but to describe how envi-
ronmental variables affected the rake biomass and biovolume
relationship, we used partial least square regression (PLSR).
This method was chosen based on the structure of the dataset
that included many continuous and potentially correlated var-
iables. Variables included in the analysis described SAV growth
form, macroalgae abundance, water depth, flow velocity, wind
(hourly wind speed and direction acquired from Meteorologi-
cal Service of Canada, climate.weather.gc.ca, accessed
27 November 2017) and acoustic data quality during surveys
(Table 1). This method allowed us to visualize in reduced space
the multiple covariates and is also robust when there is high
collinearity among many predictors and when numbers of
observations are low (Mevik and Wehrens 2007). For this, we
selected components using the leave-one-out cross-validation
and the one-sigma heuristic approach. We then selected vari-
ables using the filter method of selectivity ratio (SR), which is
the ratio of the explained to the residual variance of the
X variables on the y target projection. We chose SR over the
commonly used variable importance of the projection (VIP)
because the former selects important variables using a F-test
and performs well for prediction (Farrés et al. 2015).

To validate our intercalibration approach, we applied our
models in two steps. First, from echosounding biovolume, we
predicted rake biomass and from that estimation we predicted
quadrat biomass. We propagated model error with Monte
Carlo simulations and used the root mean square error (RMSE)
of the LMM residuals as the model error term. Second, we
visually compared in space the quadrat-equivalent biomass
predicted from echosounding to measured quadrat biomass.
For this, we created spatially interpolated biomass maps from
both quadrat and echosounding using kriging.

To compare the effect of sample size and spatial coverage on
whole-system biomass, we compared biomass estimate from
point sampling to remote sensing using the R–E dataset over five
summer campaigns. We first calculated mean biovolume along
echosounding transects in 20 m distance bins. We then created a
spatial polygon for each campaign where both rake and
echosounding had a good spatial coverage. To do so, we inter-
sected two 100 m buffers around concave hulls created from the
rake sites and echosounding sites. Within the intersected spatial
polygon, mean biomass for rake and echosounding sites were
then calculated with bootstrapping confidence intervals. This
resampling technique has been shown to be more appropriate
for estimating seaweed confidence intervals and is particularly
suitable when the true distribution of the data is unknown or
skewed (Johnson 2020). For echosounding, we also estimated a
spatially interpolated average.
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Due to high SAV heterogeneity ranging from bare patches
to dense plant abundance, absence data (where quadrat or
rake biomass = 0 and biovolume = 0) were excluded from
modeling analysis. The three techniques had different sam-
ple unit size and sampling effort (Table 1). Therefore, tech-
niques with higher sample unit size, for example, rake, or
having a higher number of observations, for example,
echosounding, had a higher probability of finding SAV in
low biomass regions compared to their correspondent
explained variable (e.g., quadrat and rake, respectively). The
resulting models to predict rake and quadrat biomass were
applied only to presence data (biovolume > 0 or rake bio-
mass > 0) and absence recorded by both techniques were
deemed true. When necessary, data used in statistical ana-
lyses were transformed to respect assumptions of normality.
Data handling and statistical analyses were performed in R
3.6.3 (R Core Team 2020). LMMs were computed with the
lme4 package (Bates et al. 2015), with AICc compared using
the MuMIn package (Barto�n 2020). PLSR with variable selec-
tion was carried out using pls and plsVarSel (Mehmood
et al. 2012; Mevik et al. 2020). Geospatial data were handled
using the sp, sf, raster, and concaveman packages (Pebesma
and Bivand 2005; Pebesma 2018; Gombin et al. 2020;
Hijmans 2020), while geostatistical modeling and kriging
were performed using gstat (Pebesma 2004). Bootstrapping
confidence intervals were computed using the boot package
(Canty and Ripley 2021).

Assessment
Prediction of quadrat biomass using rake samples

The overall relationship between quadrat biomass and rake
biomass was moderately strong with a pseudo R2 of 0.61
(Fig. 3a; Table 2; Supporting Information Table S1). The selected
random effect of sampling site accounted for an additional 9%
of variation (Supporting Information, Tables S2, S3). The quad-
rat and rake distributions were skewed, leading to non-normal
regression residuals, therefore the modeled relationship was on
log10 data. The quadrat biomass was generally significantly
higher by a factor of 4 than biomass estimated using a rake
(medianQ = 55 g m�2, medianR = 14 g m�2, paired t-test
p < 0.0001). Quadrat estimates had 20 times higher variance
(median s2R=537 gm�2, median s2Q = 30 gm�2, p<0.001) than

rake equivalents, resulting in a higher standard error (SE,
median SEQ = 10 gm�2, median SER = 4 gm�2). There was a
correlation between mean biomass and its associated error for
both quadrat and rake (rQ = 0.82, rR = 0.77), indicating that
the difference in error between methods could be caused by
the higher biomass measured in quadrat sampling. Further-
more, this inflation of error with biomass was not constant:
the ratio of variance to mean biomass (s2/x) increased with
mean biomass and was generally higher for quadrat than rake
(xQ = 41, xR = 17). As a result, both rake and quadrat measure-
ments showed a spatial aggregation of biomass (s2 > x),

although more markedly so for quadrats (99% of observations)
than for rakes (67% of observations).

The discrepancy between rake and quadrat biomass com-
parison was not constant over the biomass gradient (Fig. 3a;
Table 2). The slope was less than one (0.64) and rake under-
estimation of quadrat biomass was highest at low biomass,
while measurements from both methods converged at higher
biomass (> � 100 g m�2). The intercept was greater than
0 (log10[quadrat biomass] = 0.96 or quadrat
biomass = 8 g m�2), therefore application of the equation
would result in systematically biased biomass estimation in
the absence of SAV and has to be limited to presence data
(Table 2).

Predictions of quadrat biomass from rake measurements
were affected by substrate type and SAV growth form
(Fig. 3b,c), while no effect of collection strategy, biomass treat-
ment, lake or depth was detected. The slopes and intercepts of
the relationship differed significantly among substrate type
(F2,61 = 4.44, p = 0.02), with silt displaying a higher intercept,
lower slope and higher variability than sandy sediments
(Table 1). This was indicative of the greater efficiency of rake
to collect SAV, especially at low biomass, in sand bed areas
compared to finer and more organic sediments (silt). For sandy
sediments, the slope was not only closer to one, but the rela-
tionship also had a better fit. In hard packed sediments (clay–
pebble), rake sampling seemed to be unsuited and completely
failed to collect any plant material despite their known pres-
ence. However, this substrate type occurred only at a small
number of sites (n = 6) and the biomass at these sites was very
low (< 0.5 g m�2).

In the case of the effect of the dominant growth form, the
relationship slopes were similar for rosette and canopy-
forming SAV (F1,42 = 0.02, p = 0.88), but their intercepts
were significantly different (F1,43 = 6.93, p = 0.01). Under-
story were dominant at only two sites and were excluded
from analysis. For the same rake biomass, the rosette had a
quadrat biomass systematically higher than canopy by
1.95 g m�2. Thus, rake was more efficient at sampling
canopy-forming plants and tended to underestimate the bio-
mass of rosette-forming V. americana. Inclusion of the domi-
nant SAV growth form in the model resulted in an overall
better fit and lower prediction error.

Prediction of rake biomass from acoustic data
When comparing rake biomass to biovolume, the dis-

tinct scale of the two methods was more apparent than for
the quadrat–rake comparison. SAV were more spatially
aggregated when looking at biovolume with 98% of obser-
vations having a variance higher than its mean (s2 > x)
compared to 50% for rake. Nevertheless, the relationship
between rake biomass and biovolume was moderately strong
with a pseudo R2 of 0.57 (Fig. 4; Supporting Information
Table S4). The following equation described the generalized
relationship:
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log10 SAVrake biomass¼0:37�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

biovolume
p

�1:37 ð6Þ

An additional 27% of variation was explained by the
selected random effect of varying intercept per sampling cam-
paign and site (Supporting Information Tables S5, S6). This
suggests that environmental conditions affected the rake bio-
mass biovolume relationship. To test for this influence, we
performed a PLSR (Fig. 4b,c). We first selected the number of
components (or latent variables) for the PLSR using the RMSE
of cross-validation (RMSECV), which had a minimal value of
0.60 (log10) at eight components. To avoid overfitting, we

chose the model with three components (RMSECV = 0.63),
which was the model with the fewest components that was
less than one standard deviation from the best model (one-
sigma heuristic approach). As expected, biovolume was the
most important variables explaining these components
(Fig. 4c). Biovolume SD was also a strong predictor, and like
biovolume, it was correlated to rake biomass (rbiovolume = 0.79,
rbiovolume SD = 0.61; Supporting Information Fig. S2a,b). The
two echosounding variables were also correlated to one
another (r = 0.59; Supporting Information Figs. S2c, S3a),
although above a biovolume of 15, there was increased scatter
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Fig. 3. Relationships to predict quadrat biomass from rake biomass. Overall relationship is shown in (a) and effect of substrate and growth form are
shown in (b) and (c), respectively. Regression line is represented by the dark solid line with 95% confidence intervals as dashed lines and error bars are
standard errors. Quadrat and rake absence (value displayed at 0.1) are depicted in (a) and (b) but are not included in regressions calculation.

Table 2. Coefficients and summary statistics of models allowing to predict quadrat biomass (log10 g m�2) from rake biomass
(log10 g m�2). Models are shown for all available data and for different subsets with distinct environmental conditions having a signifi-
cant effect on the quadrat and rake relationship. 1jsite indicates varying intercept per sampling site. For LMM, R2 indicates the marginal
R2 (for the fixed effect).

Equation
number

Environmental
condition

Coefficients

R2 n
Rake biomass
range (g m�2)

Model
type

Random
effectIntercept Slope

1 All data 0.96 0.64 0.61 67 0.36–1257.68 LMM 1jsite
2 Silt 1.11 0.44 0.46 16 0.84–136.45 OLS

3 Sand 0.76 0.78 0.69 40 0.36–1257.68 OLS

4 Rosette 0.92 0.76 0.61 26 0.36–59.91 OLS

5 Canopy 0.63 20 2.30–1257.68 OLS

OLS, ordinary least square.
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between the two variables and a reduced correlation
(rbiovolume>4 = 0.10). As a result, biovolume and biovolume SD
were nearly orthogonal when looking at site configuration in
relation to predictors (Fig. 4b). Biovolume was more highly
correlated to rake SAV biomass and canopy growth form,
while biovolume SD was pulled by two extreme data points.
This suggest that biovolume SD does not add much predictive
power compared to solely modeling rake biomass from
biovolume.

Other potential predictors of rake biomass included, in
decreasing order, SAV growth form, flow velocity, mean dis-
tance to rake site, depth and wind direction (Fig. 4c;
Supporting Information Fig. S3b–f). Mean distance did not dis-
play any coherent patterns on the relationships between
biovolume and rake biomass in contrast to other variables.
The presence of canopy growth form modified the relation-
ship, where canopy-forming plants had a higher rake biomass
per biovolume than rosette-forming ones. Flow velocity was
well correlated with biomass, where sites with lower flow had
higher biomass. Depth seemed to induce a bias where shallow
sites (< 1 m) tended to display a low biovolume for a given
rake biomass. With regard to wind direction, sites sampled

when winds were coming from North to North-West had high
biovolume for their measured rake biomass.

Two-step model validation
To validate the two-step intercalibration approach, we

predicted quadrat biomass by sequentially applying the gen-
eral rake-biovolume Eq. 6 to echosounding data followed
by the general the rake-quadrat Eq. 1 (Table 2). Predicted bio-
mass was then compared to measured quadrat biomass. Three
surveys carried out over different depth ranges were available
for the comparison: a small-scale survey at constant depth
(2013, 1.4–1.5 m), a survey in the deeper water in the North
of LSP (0.5–7.0 m), and a survey in the shallow waters in the
South of LSP (< 2.7 m). We first compared paired acoustic pre-
dictions at 10 m distance of quadrat measurements (Fig. 5).
The two step predictions were comparable to the quadrat mea-
surement and did not introduce any evident bias. The stan-
dard deviation of the Monte Carlo simulation was 4 g m�2

(log10 0.59) which was an intermediate value between the
RMSE of the two models (Q–R 1.9 g m�2 and R–E 2.4 g m�2).
However, the RMSE of the predictions 123 g m�2 was higher
than the quadrat measured standard error (38 g m�2). The
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mean absolute percentage error (MAPE) of the predictions was
also higher than the relative error of the quadrat measure-
ments (1333% vs. 50%, respectively), but it was driven by a
single outlying data point in the North of LSP that, once
removed yielded a MAPE of 87%. Indeed, when looking at
each individual survey, the acoustic predictions in 2016
tended to have a higher error than the 2013 ones
(RMSE2016 = 166 g m�2, MAPE2016 = 5000%,
RMSE2013 = 95 g m�2, MAPE2013 = 51%). The 2016 predic-
tions were either well above or below the 1 : 1 line, while the
2013 predictions from sites at a constant depth had a major-
ity of their confidence intervals overlapping the 1 : 1 line. In
2016, sites from the deeper North sector tended to have
higher predictions compared to nearly absent quadrat bio-
mass (< 1 g m�2). Echosounding integrates a larger number
of measured units and thus better describes the same areal
extent than quadrat (up to 400 m2 vs. < 1 m2) which, in this
case, probably underestimates true biomass. Conversely, sites
from the shallow South sector tended to have much lower
acoustic predictions than that measured by quadrat, probably
due to a bias from echosounding because of biomass accumu-
lation at the surface from floating leaves. Overall, the predic-
tions were not significantly different from quadrat
measurements (paired t-test p = 0.17; Fig. 5b), although
acoustic predictions had somewhat lower mean and median
(xpred = 68 gm�2, xobs = 121 gm�2, medianpred = 67 gm�2,
medianobs = 107 gm�2).

Second, given that most quadrat measurements in our dataset
were located beyond 10 m from the echosounding track, we
compared spatially interpolated measured quadrat biomass to
interpolated predictions derived from echosounding (Fig. 6). In
the 2013 constant depth range survey, the quadrat and
echosounding estimation were very similar and small local differ-
ences were potentially caused by the higher sampling effort and

surveyed area of echosounding (Fig. 6a,b). In the deeper North
sector of LSP, interpolated biomasses were similar for quadrat
and echosounding above the SAV maximum colonization depth
(3 m, Fig. 6c,d). Echosounding clearly enabled the delimitation
of SAV spatially because of a better accountability of limits
imposed by depths. Quadrat interpolation tended to over-
estimate biomass in deeper waters where no sampling occurred.
Conversely, in the shallow South (< 1.5 m, Fig. 6e,f),
echosounding underestimated biomass, again probably because
of bent SAV that accumulated at the water surface and prevented
efficient estimation of underwater biomass using acoustic signal.

Effect of sample size on whole system estimation
Finally, we assessed how the increased sample size afforded

by echosounding and the use of spatial interpolation method
modify whole-system biomass estimation. Using the two
models we developed, we predicted quadrat biomass from
both rake biomass and biovolume for five independent SAV
surveys where both rake sampling and echosounding had sim-
ilar spatial extent. We then compared the mean from these
estimated biomasses, either on the raw data or on spatially
interpolated biomass (Fig. 7). In all surveyed years, the study
area displayed heterogenous biomasses, with clear high and
low biomass zones (Supporting Information Fig. S4). This
combined with the different sampling effort of rake (n = 21–
30) and echosounding (n = 1224–1934) created widely differ-
ent mean biomass per survey. Biomass predicted from rake
was, depending on the survey, either lower or higher than
that from echosounding, generally by a factor of 2. The mean
estimate of each technique was distinct and there was almost
no overlap with their confidence intervals. As a result, the
range across years of mean biomass from rake (15–59 g m�2)
was more limited compared to that from echosounding (9–
84 g m�2). The higher number of observations using
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echosounding generated more precise estimates with smaller
confidence intervals compared to the very large uncertainty
associated with the rake estimation. In contrast to the

difference between techniques, spatial interpolation of bio-
mass derived from echosounding did not affect whole-system
mean biomass that was very similar to direct estimation from
the original echosounding track. Largest differences between
estimates were observed for surveys with interrupted
echosounding tracks (2013, 2017) that consequently were
not covering the study area in a uniform manner
(Supporting Information Fig. S5).

Discussion
We successfully developed two intercalibrations that allow

for the interchangeable use of quadrat, rake and echosounding
techniques to estimate SAV biomass. We first predicted quad-
rat biomass from rake biomass and showed the effect of sub-
strate and species growth form on the predictions. Using a
resolution of 20 m, we predicted rake biomass from
biovolume, a proxy of biomass derived from echosounding.
We also showed that this prediction is affected by multiple
environmental variables, including SAV growth form, flow
velocity, depth, wind conditions and acoustic data quality. By
sequentially applying both models to echosounding tracks, we
were able to accurately predict quadrat biomass. Since the bias
of rake collection can be corrected, this faster and safer
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technique could thus be used instead of quadrats as the gro-
und truth for echosounding, particularly when assessing SAV
biomass in large areas. In rugged and deeper bottoms,
echosounding outperformed point sampling techniques in
estimating biomass, but underestimated biomass in very shal-
low waters. Use of echosounding combined with the intercali-
brations are particularly useful at large spatial scales as the
higher sampling effort from the greater number of observa-
tions provided by this technology increase accuracy by captur-
ing SAV heterogeneity.

Intercalibration between quadrat and rake
Our intercalibration between quadrat and rake biomass

confirmed that the two techniques are comparable, and that
bias introduced by rake sampling can be corrected (Rodusky
et al. 2005; Kenow et al. 2007; Johnson and Newman 2011).
This correction is important and meaningful, since failure to
correct biomass estimation from the rake can lead to a four-
fold underestimation of biomass, with even greater bias at
low biomass. In real-world application, the correction can
modify sample distribution which can reveal significant dif-
ferences or patterns in space and time that would not be
detected otherwise. Given that the correction is stronger
below a rake biomass of 100 g m�2, these effects will depend
on the measured rake biomass ranges. The model error was
also lower than the standard error of the measured quadrat
biomass and was equivalent to the error associated with rake
biomass collection. The smaller error and variance of rake
were probably caused by the larger rake sample unit size that
dampened small-scale heterogeneity captured by quadrat,
which had consistently higher ratio of variance to mean bio-
mass. Thus, a gain in accuracy, did not come at the expense
of precision.

Our finding that rake collection underestimated biomass
confirms previous observations on rake and quadrat compari-
sons (Rodusky et al. 2005; Kenow et al. 2007; Johnson and
Newman 2011). This bias is probably introduced by satura-
tion of plant material on the rake or to the loss of this mate-
rial as it is lifted from the water. Work by Masto et al. (2020),
who combined quadrat–rake apparatus and picked up
remaining plant material after rake collection, also suggests
that the rake does not completely break plant material at the
sediment surface. This harvesting efficiency from rake was
affected by the same factors explaining SAV anchorage
strength from the natural pulling forces of waves, current or
bird foraging: the size of SAV root system and sediment cohe-
sive strength (Schutten et al. 2005). Indeed, we found that
canopy-forming SAV tended to be more efficiently collected
by rake in contrast to the rosette-forming V. americana. The
latter has one of the higher root to shoot ratios among fresh-
water SAV (Stevenson 1988), thus being harder to break from
the sediment and being systematically underestimated by
the rake. We also observed that the rosette-forming linear
leaves tended slip in between rake teeth compared to the

canopy-forming that were entangled in them. Additionally,
canopy-forming SAV not only tend to have a reduced root
system, but their intertwined stem could drag plant material
from outside the rake sampled area. Dense stands of the
canopy-forming species Ceratophyllum demersum, Potamogeton
zosteriformi, and Hydrilla verticillata have previously been
overestimated by rake techniques (Rodusky et al. 2005; John-
son and Newman 2011).

Our results further indicate that rake harvesting efficiency
is dependent on the substrate type. We found that the rake
technique failed to collect any SAV in hard packed sediments
(pebble-clay), which provide higher anchorage strength.
Counterintuitively, plants were more easily and consistently
pulled out from moderately compacted (sand) than from
organic and soft sediments (silt). This finding could be an arti-
fact of the more restricted biomass range measured from siltier
sites as compared to sandier ones in our survey. However,
Rodusky et al. (2005) similarly found a weaker relationship
with quadrat biomass and a lower slope when rake collection
was on peat-like organic sediments compared to sand. In very
loose and organic sediments, the rake could have less grip and
SAV be more elusive, being dragged and buried in mud by the
rake motion. SAV is also likely more dispersed in this type of
substrate since it is not optimal for their growth (Barko
et al. 1991). All of these effects would result in less consistent
rake harvest in organic substrates. Therefore, calibration of
rake biomass measurements could include both species and
substrate information to increase accuracy. Nevertheless, we
provide a generalized relationship that can be used to derive
community level estimate. We also have shown that the cali-
bration is not impacted by the sampling strategy and the
depth of the quadrat and rake comparison. Investigators can
thus use the simplest sampling strategy, such as the haphazard
pair, and reduce sampling effort in deeper more hazardous
areas for scuba diving.

Intercalibration between rake and echosounding
We also successfully developed an intercalibration between

rake biomass and biovolume. Quadrat biomass has previously
been related to biovolume or height measured by echosounder
(Maceina et al. 1984; Duarte 1987; Thomas et al. 1990), but to
our knowledge, only Howell and Richardson (2019) related
rake biomass to biovolume. However, their biovolume was
derived from a cloud-based data-processing platform and was
not an absolute volumetric estimate; rather it referred to the
percent volume inhabited by SAV in the water column (PVI,
% cover/depth * height; Thomas et al. 1990; Winfield
et al. 2007). This metric is not appropriate to estimate biomass
because it is a depth-standardized measurement that does not
reflect variation in plant height. For example, given a surface
cover of 100%, the same PVI of 80% is measured for a plant
height of 2.4 m at a depth of 3 m (2.4/3 * 100) or a height of
0.8 m at a depth of 1 m (0.8/1 * 100). Comparison of these
specimens’ biomass would likely be very different given their
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threefold size difference. Thus, care must be taken when
blindly applying measure from the manufacturer; the use of
the simple biovolume as % cover multiplied by height is rec-
ommended to compare with biomass estimates.

We computed a generalized relationship between rake bio-
mass and biovolume that allowed us to validate the sequential
application of rake-echosounding and quadrat–rake models.
However, the echosounding and rake relationship was affected
by several environmental variables, notably SAV growth form.
Indeed, Duarte (1987) has previously shown that given their
different biomass allocation with height, deriving calibration
by SAV growth form increase accuracy in quadrat biomass esti-
mation. Although not detected in our model, filamentous
algae could further introduce bias in the biovolume-rake bio-
mass relationship since they can be detected by echosounder
(Depew et al. 2009; Bučas et al. 2016). Predictions were also
affected by environmental conditions during sampling, with
clear effects of flow velocity, depth and wind direction. The
depth and flow effects could be due to differences in species
composition that tend to vary by depth or decrease in biomass
in deeper areas more exposed to faster flow at our study site
(Hudon 1997). Alternatively, underestimation in shallow areas
could be due to detection problems either because of an over-
estimation of bottom depth, which is used to calculate plant
height, or of floating plant material at the water surface that
was not detected by the echosounder. Observations when
wind was coming from North to North-West also over-
estimated biovolume. In LSP, winds coming from this direc-
tion go against water current and are in the general
orientation of the lake, which increases the traveling distance
on open water. Both of these factors can increase wave height
and create bubbles that cause false echosounding plant detec-
tion. To account for these environmental variations, greater
accuracy could be provided by conducting a calibration per
sampling campaign (Figure 4a), for similar environmental con-
ditions or during favorable wind conditions.

Versatility of using two intercalibrations
Compared to the application of a single technique, our two

intercalibration approach allows for more versatility and the
measurement of SAV biomass at wider temporal and spatial
scales. We provide in Fig. 8 a step-by-step guideline composed
of key questions that help decide when only quadrat collec-
tion, the rake–quadrat intercalibration or the full two-step
intercalibration is best suited. First, the choice of the method
should be guided by the desired spatial and temporal scale of
inquiry. When sampling effort is low, quadrats are likely to be
the first technique of choice given its accuracy. Although
accurate, collecting biomass from quadrats is rarely conceiv-
able. Indeed, given that scuba-diving can be a life-threatening
activity, it is increasingly regulated by institutions who estab-
lish strict safety protocols and limit its use. Rake becomes an
interesting alternative as it can limit scuba-diving to a one-
time event for the determination of the quadrat–rake

intercalibration. In addition, the use of rake saves time since
that, depending on the diver’s experience, a single quadrat
collection can take up to half an hour (Downing and Ander-
son 1985) compared to a few minutes for rake. Time and
resources gained by using the rake in combination with the
improved underwater accessibility can be dedicated to addi-
tional sample collection, thus improving sample size, the
understanding of SAV diversity, and spatial coverage.

If a larger spatial and temporal resolution is required,
echosounding likely becomes the technique of choice. The
major impediment to apply echosounding would be its high
purchase cost and the necessity to postprocess results. These
can be reduced by considering the use of a consumer-grade
echosounder coupled to cloud-based automated data-
processing tools (Munday et al. 2013; Helminen et al. 2019;
Howell and Richardson 2019). Once echosounding is chosen,
it also requires a ground truthing as it only provides a proxy
of biomass. Quadrats could be used for this purpose
(Duarte 1987), and given the safety issues and cumbersome-
ness of the techniques it should be considered only if very
few samples are needed. Rake and our two-step inter-
calibration approach would likely be more appropriate as
rake is simpler, safer and faster to sample. Using rake as a gro-
und truth enables echosounding to cover large extents of
SAV meadows in a uniform manner, thus capturing more of
the spatial heterogeneity and increasing biomass accuracy at
the ecosystem scale. In our whole-system estimation, the dif-
ferent sampling efforts yielded incomparable biomass
between techniques. Although the precision of biomass pre-
dictions from echosounding at an individual site is lower
than that of rake, that loss is counteracted by the sheer num-
ber of echosounding measurements. Achieving a similar sam-
pling effort with the rake technique would be impossible. We
estimated that it would take 60 days using a rake to simply
collect a similar ecosystem-scale sample areal extent of the
echosounder as observed in Fig. 7, without taking into
account processing time. We also saw that there is no real
gain in using spatial interpolation techniques to estimate
biomass if there is a thorough coverage of the study area with
echosounding. This is more effective as it requires less post-
processing and computing power. Furthermore, using the
rake in combination with echosounding provides informa-
tion on SAV species that is not available using echosounding.
Using the two techniques also allows to increase the avail-
able depth range as rake samples are suitable in very shallow
areas and echosounding in deeper ones.

Our approach also allows for retrospective decisions with a
change in priorities. For example, many existing monitoring
programs rely on rake measurements (e.g., Rodusky et al.
2005; Yin and Kreiling 2011). If more rapid sampling or higher
coverage is needed, our approach could facilitate the substitu-
tion of rake technique with echosounding. To do so we pro-
vide an intercalibration that allows for this comparison, but
we also point out that the ecosystem-scale biomass estimation
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depends on the sampling effort, which is inherently higher
with echosounding. Thus, to have reliable SAV biomass trends
through time, only the sites that were continuously sampled
should be compared. This mean that a subset of the
echosounding data, that would likely cover a greater area than
rake sites, should be used for this temporal analysis.

Comments and recommendations
The choice to use one or both intercalibrations will depend

on the study goals, resources available and time granted. If
one only intends to use rake, the quadrat and rake calibration
can be conducted using the simplest sampling strategy, where
only a one-time calibration is needed, with sites chosen to
maximize a biomass gradient and ensure divers security.
Increased accuracy can be achieved by deriving species- and
substrate-specific equations. For the rake and echosounding
combination, an even more efficient intercalibration can be
achieved than the one presented here. For example, despite
having a rake dataset of 217 sites, we only had 52 sites that
spatially matched the echosounding tracks at 10 m radius

resolution. Since the two sampling techniques were not used
simultaneously, sampling with both techniques had to be
conducted as close as possible to an assigned geographic posi-
tion. Over the 6-yr sampling period, variations in staff and
GPS accuracy resulted in reduced precision, yielding a lower
number of matched pairs in later years, which affected pre-
dictions (Fig. 4c). These shortcomings can be overcome by
conducting the rake sampling and echosounding simulta-
neously. For example, buoys could be deployed as the echo-
sounder is passing over the selected calibration sites for
subsequent rake collection. Furthermore, when dense plant
material is floating at the water surface, echosounding is
inappropriate: the transducer is blinded which leads to drasti-
cally underestimated biomass. In contrast, the rake is not
appropriate in deep waters (> 3–4 m) where other apparatus
and collection strategies should be tested and compared to
either quadrats or echosounding. Therefore, to maximize
matched rake-echosounding sites and avoid sampling in
inappropriate conditions, careful planning of sampling and
training of field technicians are necessary.

Fig. 8. Step-by-step guideline to decide what biomass method to use and when combining them is desirable.
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Information needed regarding species composition, substrate
type and time dedicated for biomass samples or echosounding
postprocessing should also be planned in advance. The rake has
the advantage of providing species information, but each sample
entails considerable sample processing time. Using a faster semi-
quantitative approach such as applying a visual abundance scale
based on the degree of each species filling the rake teeth can
help increase sample size and provide community information
at the ecosystem scale (Yin and Kreiling 2011), which can be
used to more accurately predict biomass. When different SAV
communities display distinctive heights, for example understory
charophytes and taller angiosperms, applying height threshold
to echosounding data can provide functional group information
at large spatial scales (Bučas et al. 2016). Recent echosounders
also provide information on substrate type that can increase
accuracy when applying our two-step calibration approach
(Munday et al. 2013; Helminen et al. 2019). New technological
development in hydroacoustic autonomous boats (Goulon
et al. 2021) are further promising to reduce sampling time and
increase sampling frequency. To confirm that the inter-
calibration we provide can be generalized, comparison of bio-
mass techniques should additionally be conducted in other
environments and using a diversity of apparatus such as differ-
ent tools to sample SAV from the surface or echosounder fre-
quencies. Given the technological progress that were
accomplished over the past decade, it is likely that future devel-
opments in GPS, echosounding and computing power will fur-
ther facilitate and decrease costs related to large-scale estimations
of SAV biomass over a wide range of environmental conditions.

Data availability statement
The data that support the findings of this study are openly

available in Zenodo at link https://doi.org/10.5281/zenodo.
7622140.
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