Rechercher
Bibliographie complète 1 424 ressources
-
Abstract Numerous studies have examined the impact of prairie pothole wetlands on overall watershed dynamics. However, very few have looked at individual wetland dynamics across a continuum of alteration status using subdaily hydrometric data. Here, the importance of surface and subsurface water storage dynamics in the prairie pothole region was documented by (1) characterizing surface fill–spill dynamics in intact and consolidated wetlands; (2) quantifying water‐table fluctuations and the occurrence of overland flow downslope of fully drained wetlands; (3) assessing the relation (or lack thereof) between intact, consolidated or drained wetland hydrological behaviour, and stream dynamics; and (4) relating wetland hydrological behaviour to landscape characteristics. Focus was on southwestern Manitoba, Canada, where ten intact, three consolidated, seven fully drained wetlands, and a nearby creek were monitored over two years with differing antecedent storage conditions. Hourly hydrological time series were used to compute behavioural metrics reflective of year‐specific and season‐specific wetland dynamics. Behavioural metrics were then correlated to wetland physical characteristics to identify landscape controls on wetland hydrology. Predictably, more frequent spillage or overland flow was observed when antecedent storage was high. Consolidated wetlands had a high degree of water permanence and a greater frequency of fill–spill events than intact wetlands. Shallow and highly responsive water tables were present downslope of fully drained wetlands. Potential wetland–stream connectivity was also inferred via time‐series analysis, while some landscape characteristics (e.g., wetland surface, catchment area, and storage volume) strongly correlated with wetland behavioural metrics. The nonstationarity of dominant processes was, however, evident through the lack of consistent correlations across seasons. This, therefore, highlights the importance of combining multiyear high‐frequency hydrometric data and detailed landscape analyses in wetland hydrology studies.
-
Redlining occurs when institutions decline to make mortgage loans in specific areas. The practice originated in the 1930s, when federal agencies encouraged lenders to rate neighbourhoods for mortgage risk. Since the 1960s, especially in the US, it has been associated with disinvestment, racial discrimination and neighbourhood decline. It has always been viewed as a feature of the inner city. Historical evidence indicates that across Canada the first areas to be redlined were the less-desirable suburbs. Land registry and property assessment data establish the emergent patterns in Hamilton, Ontario. Between 1931 and 1951, institutional lending became a social norm first on new dwellings in suburbs. Individual lenders, previously dominant, were relegated to older inner-city properties or cheaper dwellings in less-desirable suburbs. In 1931, there were only minor geographical variations in the incidence of mortgage finance, and specifically of institutional financing, across the urban area. By 1951, lending institutions, led by insurance companies, were discriminating sharply in favour of the West End, the Mountain and Bartonville, and against those parts of the East End that were unserviced or close to lakefront industry. The evidence for Hamilton confirms that in Canada redlining originated in the suburbs. The same may also be true for US metropolitan areas, although the institutional context was different and relevant data are lacking.
-
AbstractA new land surface parameterization scheme, named the Soil, Vegetation, and Snow (SVS) scheme, was recently developed at Environment and Climate Change Canada to replace the operationally used Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme. The new scheme is designed to address a number of weaknesses and limitations of ISBA that have been identified over the last decade. Unlike ISBA, which calculates a single energy budget for the different land surface components, SVS introduces a new tiling approach that includes separate energy budgets for bare ground, vegetation, and two different snowpacks (over bare ground and low vegetation and under high vegetation). The inclusion of a photosynthesis module as an option to determine the surface stomatal resistance is another significant addition in SVS. The representation of vertical water transport through soil has also been substantially improved in SVS with the introduction of multiple soil layers. Overall, offline simulations conduc...
-
If research on attribution of extreme weather events is to inform emerging climate change policies, it needs to diagnose all of the components of risk.
-
Abstract A modified hybrid terrain-following vertical coordinate has recently been implemented within the Global Environmental Multiscale atmospheric model that introduces separately controlled height-dependent progressive decaying of the small- and large-scale orography contributions on the vertical coordinate surfaces. The new vertical coordinate allows for a faster decay of the finescale orography imprints on the coordinate surfaces with increasing height while relaxing the compression of the lowest model levels over complex terrain. A number of tests carried out—including experiments involving Environment and Climate Change Canada’s operational regional and global deterministic prediction systems—demonstrate that the new vertical coordinate effectively eliminates terrain-induced spurious generation and amplification of upper-air vertical motion and kinetic energy without increasing the computational cost. Results also show potential improvements in precipitation over complex terrain.
-
The inherent complexity of planning at sea, called maritime spatial planning (MSP), requires a planning approach where science (data and evidence) and stakeholders (their engagement and involvement) are integrated throughout the planning process. An increasing number of innovative planning support systems (PSS) in terrestrial planning incorporate scientific models and data into multi-player digital game platforms with an element of role-play. However, maritime PSS are still early in their innovation curve, and the use and usefulness of existing tools still needs to be demonstrated. Therefore, the authors investigate the serious game, MSP Challenge 2050, for its potential use as an innovative maritime PSS and present the results of three case studies on participant learning in sessions of game events held in Newfoundland, Venice, and Copenhagen. This paper focusses on the added values of MSP Challenge 2050, specifically at the individual, group, and outcome levels, through the promotion of the knowledge co-creation cycle. During the three game events, data was collected through participant surveys. Additionally, participants of the Newfoundland event were audiovisually recorded to perform an interaction analysis. Results from survey answers and the interaction analysis provide evidence that MSP Challenge 2050 succeeds at the promotion of group and individual learning by translating complex information to players and creating a forum wherein participants can share their thoughts and perspectives all the while (co-) creating new types of knowledge. Overall, MSP Challenge and serious games in general represent promising tools that can be used to facilitate the MSP process.
-
This study evaluates projected changes to rain-on-snow (ROS) characteristics (i.e., frequency, rainfall amount, and runoff) for the future 2041–2070 period with respect to the current 1976–2005 period over North America using six simulations, based on two Canadian RCMs, driven by two driving GCMs for RCP4.5 and 8.5 emission pathways. Prior to assessing projected changes, the two RCMs are evaluated by comparing ERA-Interim driven RCM simulations with available observations, and results indicate that both models reproduce reasonably well the observed spatial patterns of ROS event frequency and other related features. Analysis of current and future simulations suggest general increases in ROS characteristics during the November–March period for most regions of Canada and for northwestern US for the future period, due to an increase in the rainfall frequency with warmer air temperatures in future. Future ROS runoff is often projected to increase more than future ROS rainfall amounts, particularly for northeastern North America, during snowmelt months, as ROS events usually accelerate snowmelt. The simulations show that ROS event is a primary flood generating mechanism over most of Canada and north-western and -central US for the January–May period for the current period and this is projected to continue in the future period. More focused analysis over selected basins shows decreases in future spring runoff due to decreases in both snow cover and ROS runoff. The above results highlight the need to take into consideration ROS events in water resources management adaptation strategies for future climate.
-
Using a new data set on annual deaths from disasters in 73 nations from 1980 to 2002, this paper tests several hypotheses concerning natural-disaster mitigation. Though richer nations do not experience fewer natural disasters than poorer nations, richer nations do suffer less death from disaster. Economic development provides implicit insurance against nature's shocks. Democracies and nations with higher-quality institutions suffer less death from natural disaster. Because climate change is expected to increase the frequency of natural disasters such as floods, these results have implications for the incidence of global warming.
-
The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbor weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. The Upper Thames River Basin in Ontario, Canada isused as a case study and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach is shown to improve on the previous versions of the model and offers a major advantage over many parametric and semiparametric weather generators in that multisite use can be easily achieved without making statistical assumptions dealing with the spatial correlations and probability distributions of each variable.
-
According to Department of Fisheries and Oceans Canada, culverts and other stream crossings must be designed to ensure fish passage. The effects of ice processes on these fish passage designs have never been assessed. This study is the first to document ice processes on two different types of fish passage designs (streambed simulation and baffle). The results of a 2 year field monitoring campaign showed that the culvert simulating the streambed retains a natural ice regime, i.e., both freeze-up and break-up occurred concurrently with the rest of the stream, while multiple supercooling events were recorded under a thin ice cover. As for the culvert with baffles, it was observed that the ice cover formed earlier and stayed longer in the culvert, which can create a barrier for fish transiting through them.
-
Changes in society's vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (g10000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
-
Recent research has extended conventional hydrological algorithms into a hexagonal grid and noted that hydrological modeling on a hexagonal mesh grid outperformed that on a rectangular grid. Among the hydrological products, flow routing grids are the base of many other hydrological simulations, such as flow accumulation, watershed delineation, and stream networks. However, most of the previous research adopted the D6 algorithm, which is analogous to the D8 algorithm over a rectangular grid, to produce flow routing. This paper explored another four methods regarding generating flow directions in a hexagonal grid, based on four algorithms of slope aspect computation. We also developed and visualized hexagonal-grid-based hydrological operations, including flow accumulation, watershed delineation, and hydrological indices computation. Experiments were carried out across multiple grid resolutions with various terrain roughness. The results showed that flow direction can vary among different approaches, and the impact of such variation can propagate to flow accumulation, watershed delineation, and hydrological indices production, which was reflected by the cell-wise comparison and visualization. This research is practical for hydrological analysis in hexagonal, hierarchical grids, such as Discrete Global Grid Systems, and the developed operations can be used in flood modeling in the real world.
-
As Hurricane Katrina revealed, coastal communities have become far more vulnerable to tropical storms and the long-term displacement of residents. Yet, because the emergency management model presumes that recovery quickly follows response, governments focus only on short-term, localized displacement. However, long-term and long-distance displacement exposes a gray area between immediate shelter and permanent housing, along with concerns about vulnerability, housing availability, and land development. We begin this article by discussing the transition between response and recovery. We then review literature regarding social vulnerability, displacement, provision of temporary housing, households' return decisions, and disaster-driven land development and housing construction processes. We close with thoughts on future research to increase planners' understanding of the issues involved and to help them craft effective policies.
-
Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.