Rechercher
Bibliographie complète 1 016 ressources
-
The climate crisis not only has significant impacts on biodiversity and the physical health of humans, but its ramifications are also affecting people’s mental health. Eco-anxiety, or the emotions that emerge with the awareness of climate change and the apprehension of its detrimental effects, has been investigated in adults and adolescents, but much less attention has been given to the impacts on children’s mental health and well-being. Initial evidence confirms that youth are significantly concerned about climate change, but few studies have investigated the resulting emotional responses of children and the role of their parents in tempering these, especially using qualitative methodologies. The present study used a descriptive qualitative design with a convenience sample of parents and child dyads, assessed separately. Children’s ( n = 15, ages 8–12 years) experiences were explored using semi-structured interviews and their parents’ ( n = 12) perceptions were captured using a survey with closed and open-ended questions. A reflexive thematic analysis was used to analyze the interview data, and content analysis was used to investigate parent-child experiences. Three themes emerged from the thematic analysis: 1. children’s understanding of climate change, 2. their emotional reaction to climate change, and 3. their coping mechanisms to deal with these emotions. The comparative content analysis revealed that parents who were aware that their children had concerns about climate change, had children who used more adaptive coping mechanisms. The results of this qualitative study contribute to a better understanding of children’s emotional experience of the awareness of climate change in Canada and how they cope with these emotions. Furthermore, the results provide insight into the role parents might play in helping their children cope with their feelings.
-
Cette thèse explore l'adaptation urbaine au changement climatique dans les quartiers informels du Sud Global. Ce sont des lieux de grands défis et de réponses innovantes. Le contexte mondial d’exclusion postcoloniale et capitaliste entraîne la vulnérabilité et le risque supplémentaire du changement climatique augmente ces aléas contextuels. Des chercheurs ont critiqué les réponses traditionnelles en matière de planification de l’adaptation, les jugeant trop prescriptives, technologiquement dépendantes et manquant les besoins locaux. L’adaptation communautaire peut être trop isolée et axée sur les besoins des individus et des élites face à la diversité des défis locaux. Ni l’un ni l’autre ne prennent en compte les dimensions politiques de la planification de l’adaptation. En réponse, les spécialistes critiques de l’adaptation urbaine ont appelé à une meilleure compréhension des expériences locales afin de comprendre comment les gens priorisent, négocient et réagissent à une multiplicité de risques. En réponse à ces appels, ce projet cherche à mieux comprendre comment les gens perçoivent et répondent à ces défis à travers une étude de cas unique et exploratoire. Grâce à l’étude de cas qualitative dans le quartier de Panorama, situé dans la municipalité de Yumbo, en banlieue de Cali en Colombie, le projet cherche à comprendre comment l'identité et le pouvoir influencent l'accès aux ressources et aux institutions nécessaires pour s'adapter. Le projet se concentre sur deux sites de Panorama : un comité local d'aménagement soucieux de la sécurité foncière et une fondation écologique travaillant sur la conservation des espaces verts. Les résultats mettent en évidence des règles du jeu inégales où les habitants les plus vulnérables empruntent des voies parfois illégales pour accéder à la terre et au logement. Plus les résidents sont établis, plus ils bénéficient d'avantages et d'expérience pour jouer le système. Les dirigeants et les experts travaillent dur pour négocier entre les formalités. Cependant, l’absence d’un processus de planification transparent laisse divers intérêts se disputer les ressources, ce qui conduit parfois à des conflits et met fin à la créativité. Les résultats de la recherche suggèrent que la planification de l’adaptation urbaine dans les contextes informels des pays du Sud doit continuer à s’appuyer sur des recherches et des pratiques qui tiennent compte de la diversité et des conflits afin de mieux faciliter une réponse juste et équitable à la crise climatique.
-
Abstract Extreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.
-
Background Given the important role that municipalities must play in adapting to climate change, it is more than ever essential to measure their progress in this area. However, measuring municipalities’ adaptation progress presents its share of difficulties especially when it comes to comparing (on similar dimensions and over time) the situation of different municipal entities and to linking adaptation impacts to local actions. Longitudinal studies with recurring indicators could capture changes occurring over time, but the development of such indicators requires great emphasis on methodological and psychometric aspects, such as measurement validity. Therefore, this study aimed to develop and validate an index of adaptation to heatwaves and flooding at the level of municipal urbanists and urban planners. Methods A sample of 139 officers working in urbanism and urban planning for municipal entities in the province of Quebec (Canada) completed an online questionnaire. Developed based on a literature review and consultation of representatives from the municipal sector, the questionnaire measured whether the respondent’s municipal entity did or did not adopt the behaviors that are recommended in the scientific and gray literature to adapt to heatwaves and flooding. Results Results of the various metrological analyses (indicator reliability analysis, first order confirmatory factor analysis, concurrent validity analysis, and nomological validity assessment analysis) confirmed the validity of the index developed to measure progress in climate change adaptation at the municipal level. The first dimension of the index corresponds to preliminary measures that inform and prepare stakeholders for action (i.e., groundwork adaptation initiatives), whereas the second refers to measures that aim to concretely reduce vulnerability to climate change, to improve the adaptive capacity or the resilience of human and natural systems (i.e., adaptation actions). Conclusion The results of a series of psychometric analyses showed that the index has good validity and could properly measure the adoption of actions to prepare for adaptation as well as adaptation actions per se. Municipal and government officials can therefore consider using it to monitor and evaluate adaptation efforts at the municipal level.
-
Summary Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.
-
Abstract Climatic disaster impacts, such as loss of human life as its most severe consequence, have been rising globally. Several studies argue that population growth is responsible for the rise, and the role of climate change is not evident. While disaster mortality is highest in low-income countries, existing studies focus mostly on developed countries. Here we address this impact attribution question in the context of the Global South using disaster-specific mixed-effects regression models. We show that the rise in landslide and flood mortality in a low-income country such as Nepal between 1992-2021 is primarily attributable to increased precipitation extremes. An increase in one standardized unit in maximum one-day precipitation increases flood mortality by 33%, and heavy rain days increase landslide mortality by 45%. Similarly, a one-unit increase in per capita income decreases landslide and flood mortality by 30% and 45%, respectively. Population density does not show significant effects.
-
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.
-
Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.
-
Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This paper presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Quebec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), three insect pests (codling moth (Cydia pomonella), plum curculio (Conotrachelus nenuphar) and apple maggot (Rhagoletis pomonella)) and two diseases (apple scab (Venturia inaequalis) and fire blight (Erwinia amylovora)). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period.
-
Wetlands play an important role in preventing extreme low flows in rivers and groundwater level drawdowns during drought periods. This hydrological function could become increasingly important under a warmer climate. Links between peatlands, aquifers, and rivers remain inadequately understood. The objective of this study was to evaluate the hydrologic functions of the Lanoraie peatland complex in southern Quebec, Canada, under different climate conditions. This peatland complex has developed in the beds of former fluvial channels during the final stages of the last deglaciation. The peatland covers a surface area of ~76 km2 and feeds five rivers. Numerical simulations were performed using a steady-state groundwater flow model. Results show that the peatland contributes on average to 77% of the mean annual river base flow. The peatland receives 52% of its water from the aquifer. Reduced recharge scenarios (−20 and −50% of current conditions) were used as a surrogate of climate change. With these scenarios, the simulated mean head decreases by 0.6 and 1.6 m in the sand. The mean river base flow decreases by 16 and 41% with the two scenarios. These results strongly underline the importance of aquifer-peatland-river interactions at the regional scale. They also point to the necessity of considering the entire hydrosystem in conservation initiatives.
-
Cold region hydrology is conditioned by distinct cryospheric and hydrological processes. While snowmelt is the main contributor to both surface and subsurface flows, seasonally frozen soil also influences the partition of meltwater and rain between these flows. Cold regions of the Northern Hemisphere midlatitudes have been shown to be sensitive to climate change. Assessing the impacts of climate change on the hydrology of this region is therefore crucial, as it supports a significant amount of population relying on hydrological services and subjected to changing hydrological risks. We present an exhaustive review of the literature on historical and projected future changes on cold region hydrology in response to climate change. Changes in snow, soil, and streamflow key metrics were investigated and summarized at the hemispheric scale, down to the basin scale. We found substantial evidence of both historical and projected changes in the reviewed hydrological metrics. These metrics were shown to display different sensitivities to climate change, depending on the cold season temperature regime of a given region. Given the historical and projected future warming during the 21st century, the most drastic changes were found to be occurring over regions with near-freezing air temperatures. Colder regions, on the other hand, were found to be comparatively less sensitive to climate change. The complex interactions between the snow and soil metrics resulted in either colder or warmer soils, which led to increasing or decreasing frost depths, influencing the partitioning rates between the surface and subsurface flows. The most consistent and salient hydrological responses to both historical and projected climate change were an earlier occurrence of snowmelt floods, an overall increase in water availability and streamflow during winter, and a decrease in water availability and streamflow during the warm season, which calls for renewed assessments of existing water supply and flood risk management strategies.
-
The deterioration of anhydrite rock exposed to a freeze–thaw environment is a complex process. Therefore, this paper systematically investigated the physical and mechanical evolutions of freeze–thawed anhydrite rock through a series of multi-scale laboratory tests. Meanwhile, the correlation between pore structure and macroscopic mechanical parameters was discussed, and the deterioration mechanisms of anhydrite rock under freeze–thaw cycles were revealed. The results show that with the increase in freeze–thaw processes, the mechanical strength, elastic modulus, cohesion, proportions of micropores (r ≤ 0.1 μm), and PT-Ipore throat (0–0.1 μm) decrease exponentially. In comparison, the mass variation, proportions of mesopores (0.1 μm < r < 1 μm), macropores (r ≥ 1 μm), and PT-II pore throat (0.1–4 μm) increase exponentially. After 120 cycles, the mean porosity increases by 66.27%, and there is a significant honeycomb and pitted surface phenomenon. Meanwhile, as the freeze–thaw cycles increase, the frost resistance coefficient decreases, while the damage variable increases. The correlation analysis between pore structure and macroscopic mechanical parameters shows that macropores play the most significant role in the mechanical characteristic deterioration of freeze–thawed anhydrite rock. Finally, it is revealed that the water–rock expansion and water dissolution effects play a crucial role in the multi-scale damage of anhydrite rock under the freeze–thaw environment.
-
Abstract Surface conditions are known to mediate the impacts of climate warming on permafrost. This calls for a better understanding of the environmental conditions that control the thermal regime and the depth of the active layer, especially within heterogeneous tundra landscapes. This study analyzed the spatial relationships between thaw depths, ground surface temperature (GST), and environmental conditions in a High Arctic tundra environment at Bylot Island, Nunavut, Canada. Measurements were distributed within the two dominant landforms, namely earth hummocks and low‐center polygons, and across a topographic gradient. Our results revealed that GST and thaw depth were highly heterogeneous, varying by up to 3.7°C and by more than 20 cm over short distances (<1 m) within periglacial landforms. This microscale variability sometimes surpassed the variability at the hillslope scale, especially in summer. Late‐winter snowpack thickness was found to be the prime control on the spatial variability in winter soil temperatures due to the highly heterogeneous snow cover induced by blowing snow, and this thermal effect carried over into summer. However, microtopography was the predominant driver of the spatial variability in summer GST, followed by altitude and moss thickness. In contrast, the spatial variability in thaw depth was influenced predominantly by variations in moss thickness. Hence, summer microclimate conditions dominated active layer development, but a thicker snowpack favored soil cooling in the following summer, due to the later disappearance of snow cover. These results enhance our understanding of High Arctic tundra environments and highlight the complexity of considering surface feedback effects in future projections of permafrost states within heterogeneous tundra landscapes.