Votre recherche
Résultats 97 ressources
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
Abstract Real-time precipitation data are essential for weather forecasting, flood prediction, drought monitoring, irrigation, fire prevention, and hydroelectric management. To optimize these activities, reliable precipitation estimates are crucial. Environment and Climate Change Canada (ECCC) leads the Canadian Precipitation Analysis (CaPA) project, providing near-real-time precipitation estimates across North America. However, during winter, CaPA’s 6-hourly accuracy is limited because many automatic surface observations are not assimilated due to wind-induced gauge undercatch. The objective of this study is to evaluate the added value of adjusted hourly precipitation amounts for gauge undercatch due to wind speed in CaPA. A recent ECCC dataset of hourly precipitation measurements from automatic precipitation gauges across Canada is included in CaPA as part of this study. Precipitation amounts are adjusted based on several types of transfer functions, which convert measured precipitation into what high-quality equipment would have measured with reduced undercatch. First, there are no notable differences in CaPA when comparing the performance of the universal transfer function with that of several climate-specific transfer functions based on wind speed and air temperature. However, increasing solid precipitation amounts using a specific type of transfer function that depends on snowfall intensity rather than near-surface air temperature is more likely to improve CaPA’s precipitation estimates during the winter season. This improvement is more evident when the objective evaluation is performed with direct comparison with the Adjusted Daily Rainfall and Snowfall (AdjDlyRS) dataset.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Questions have been raised about the correctness of water quality models with complete mixing assumptions in cross junctions of water distribution systems. Recent developments in the mixing phenomenon within cross junctions of water distribution networks (WDNs) have heightened the need for evaluating the existing incomplete mixing models under real-world conditions. Therefore, in this study, two cross junctions with pipe diameters of 100 Â 100 Â 100 Â 100 mm and 150 Â 150 Â 150 Â 150 mm were employed in laboratory experiments to evaluate six existing incomplete mixing models for 25 flow rate scenarios ranging between 1.5 and 3.0 L/s. It was observed that within the same flow rate scenario, the degree of mixing in a cross junction with a pipe relative roughness of 6.00 Â 10À5 (pipe diameter of 25 mm) was higher than that in a cross junction with a pipe relative roughness of 3.00 Â 10À5 (pipe diameter of 50 mm) and smaller. Considering the real-world size of pipes in evaluating the incomplete mixing models showed that two incomplete mixing models, AZRED and the one by Shao et al., had the best accordance with the results of the laboratory experiments.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Les inondations de 2017 et 2019 au Québec ont affecté respectivement 293 et 240 municipalités. Ces inondations ont généré une cascade d’évènements stressants (stresseurs primaires et secondaires) qui ont eu des effets sur la santé mentale de la population et retardé le processus de rétablissement des individus. Cette période de rétablissement peut s’échelonner sur plusieurs mois voire plusieurs années. Cette étude s’inscrit dans la spécificité de la recherche mixte mise de l’avant à travers trois stratégies de recherche, réalisées de façon séquentielle : 1) sondage populationnelle réalisé auprès de 680 personnes, 2) analyse de documents produits par les organisations participant au processus de rétablissement social des sinistrés, ou sur des analyses externes portant sur ces interventions de rétablissement et 3) entrevues semi-dirigées auprès de 15 propriétaires occupants ayant complété une demande d’indemnisation à la suite des inondations de 2019 et auprès de 11 professionnels et gestionnaires participant au processus de rétablissement social. Les entrevues semi-dirigées et les questionnaires complétés par les personnes sinistrées lors des inondations de 2019 démontrent que les principales sources de stress ayant des impacts sur la santé et le bien-être des répondants sont : 1) l’absence d’avertissement et la vitesse de la montée des eaux; 2) l’obligation de se relocaliser et la peur d’être victime de pillage; 3) le manque de solidarité et d’empathie de la part de certains employés du MSP; 4) la gestion des conflits familiaux; 5) la gestion de problèmes de santé nouveaux ou préexistants; 6) la complexité des demandes d’indemnisation; 7) la lourdeur et les délais des travaux de nettoyage ou de restauration; 8) les indemnités inférieures aux coûts engendrés par l’inondation; 9) les pertes matérielles subies, particulièrement ceux d’une valeur de plus de 50 000 $; et 10) la diminution anticipée de la valeur de sa résidence. À cela s’ajoute l’insatisfaction à l’égard du programme d’indemnisation du gouvernement du Québec (PGIAF) qui fait plus que doubler la prévalence des symptômes de stress post-traumatique. Les inondations entraînent également une perte de satisfaction ou de bien-être statistiquement significative. La valeur monétaire de cette perte de jouissance peut être exprimée en équivalent salaires. En moyenne, cette diminution du bien-être équivaut à une baisse de salaire de 60 000$ pour les individus ayant vécu une première inondation et à 100 000$ pour les individus ayant vécu de multiples inondations. Ces résultats suggèrent que les coûts indirects et intangibles représentent une part importante des dommages découlant des inondations. Ce projet de recherche vise également à analyser l’application du PGIAF et son influence sur les stresseurs vécus par les sinistrés dans le contexte de la pandémie de COVID-19. La principale recommandation de cette étude repose sur une analyse de documents, un sondage populationnel et des entrevues semi-dirigées. Ainsi, s’attaquer à la réduction de principaux stresseurs nécessite 1) d’améliorer la gouvernance du risque d’inondation, 2) d’intensifier la communication et le support aux sinistrés, et 3) de revoir les mécanismes d’indemnisation existants.
-
Abstract Measuring freshwater submerged aquatic vegetation (SAV) biomass at large spatial scales is challenging, and no single technique can cost effectively accomplish this while maintaining accuracy. We propose to combine and intercalibrate accurate quadrat‐scuba diver technique, fast rake sampling, and large‐scale echosounding. We found that the overall relationship between quadrat and rake biomass is moderately strong (pseudo R 2 = 0.61) and varies with substrate type and SAV growth form. Rake biomass was also successfully estimated from biovolume (pseudo R 2 = 0.57), a biomass proxy derived from echosounding. In addition, the relationship was affected, in decreasing relevance, by SAV growth form, flow velocity, acoustic data quality, depth, and wind conditions. Sequential application of calibrations yielded predictions in agreement with quadrat observations, but echosounding predictions underestimated biomass in shallow areas (< 1 m) while outperforming point estimation in deep areas (> 3 m). Whole‐system quadrat‐equivalent biomass from echosounding differed by a factor of two from point survey estimates, suggesting echosounding is more accurate at larger scales owing to the increased sample size and better representation of spatial heterogeneity. To decide when an individual or a combination of techniques is profitable, we developed a step‐by‐step guideline. Given the risks of quadrat‐scuba diver technique, we recommend developing a one‐time quadrat–rake calibration, followed by the use of rake and echosounding when sampling at larger spatial and temporal scales. In this case, rake sampling becomes a valid ground truthing method for echosounding, also providing valuable species information and estimates in shallow waters where echosounding is inappropriate.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
Objectifs Malgré l’existence de plusieurs traitements en ligne pour les personnes avec un trouble de stress posttraumatique (TSPT), peu d’études se sont penchées sur les données d’utilisation d’une telle intervention. Étant donné le potentiel de la modalité en ligne à pallier les obstacles limitant l’accès à l’aide psychologique, il importe de documenter les interactions des usagers avec ces outils en lien avec l’amélioration des symptômes ciblés. L’objectif de cette étude est de documenter les données d’utilisation de la plateforme de traitement en ligne RESILIENT par les personnes évacuées des feux de Fort McMurray, Alberta (Canada), et d’examiner leur association avec l’efficacité du traitement sur les symptômes de trouble de stress posttraumatique (TSPT), d’insomnie et de dépression, et l’adhésion au traitement, mesurée par le nombre de modules consultés par les participants. Méthode Quatre-vingt-dix-sept personnes évacuées des feux de Fort McMurray présentant des symptômes de TSPT, d’insomnie et de dépression sont incluses dans la présente étude. Les participants étaient invités à utiliser la plateforme RESILIENT, un autotraitement en ligne guidé par un thérapeute qui cible les symptômes de TSPT, le sommeil et l’humeur, et comprend 12 modules offrant des stratégies de thérapies cognitives et comportementales (TCC) basées sur les données probantes. Des données d’utilisation objectives (p. ex. nombre de modules consultés) et subjectives (p. ex. niveau d’efforts investis) ont été recueillies. Résultats Afin de prédire la réduction des symptômes de TSPT, de dépression et d’insomnie, ainsi que le nombre de modules consultés par les participants, des modèles de régressions séquentielles ont été effectués, avec un contrôle statistique pour les symptômes prétraitement, l’âge et le genre. Les modèles finaux ont révélé qu’une réduction des symptômes de TSPT, de dépression et d’insomnie était prédite significativement par le nombre de modules consultés (β = - 0,41 ; - 0,53 ; - 0,49 respectivement, tous p < 0,001) ainsi que par le niveau d’efforts moyen autorapporté au module 7 (mi-parcours) (β = - 0,43 ; p < 0,001 ; β = - 0,38 ; p = 0,005 et β = - 0,36 ; p = 0,007 respectivement). Le nombre de modules consultés, par ailleurs, était prédit significativement par le nombre de mots dans le 4 e module (β = 0,34 ; p < 0,001) et dans le 7 e module (β = 0,44 ; p < 0,001), ainsi que par le nombre d’entrées dans le journal du sommeil (β = 0,28 ; p < 0,001). Conclusion Les résultats ont confirmé qu’une plus grande interaction avec la plateforme influence positivement l’efficacité du traitement et qu’une utilisation accrue en début de traitement semble être un bon prédicteur de l’achèvement de celui-ci. Cette étude confirme l’importance de soutenir l’engagement des participants envers le traitement en ligne afin d’optimiser son efficacité. , Objectives Despite the existence of several online treatments for people with posttraumatic stress disorder (PTSD), few studies have examined usage data for such interventions. Given the potential of the online modality to alleviate barriers limiting access to psychological help, it is important to document users’ interactions with these tools in relation to the improvement of targeted symptoms. The objective of this study is to document usage data of the online treatment platform RESILIENT by people evacuated from the Fort McMurray, Alberta (Canada) fires, and to examine their association with the effectiveness of treatment on symptoms of posttraumatic stress disorder (PTSD), insomnia and depression, and adherence to treatment, as measured by the number of modules accessed by participants. Methods Ninety-seven people evacuated from the Fort McMurray fires with symptoms of PTSD, insomnia and depression were included in this study. Participants were invited to use the RESILIENT platform, an online therapist-assisted self-help treatment program that targets PTSD symptoms, sleep and mood, and includes 12 modules offering evidence-based cognitive-behavioural therapy (CBT) strategies. Both objective (e.g., number of modules accessed) and subjective (e.g., level of effort invested) usage data were collected. Results In order to predict the reduction in PTSD, depression and insomnia symptoms, as well as the number of modules accessed by participants, sequential regression models were conducted, with statistical control for pretreatment symptoms, age and gender. The final models revealed that a reduction in PTSD, depression and insomnia symptoms was significantly predicted by the number of modules accessed (β = -.41; -.53; -.49 respectively, all p <.001) as well as the mean self-reported level of effort at module 7 (midway) (β = -.43; p <.001; β = -.38; p = .005 and β = -.36; p = .007 respectively). The number of modules accessed, on the other hand, was significantly predicted by the number of words in the 4th module (β = .34; p <.001) and 7th module (β = .44; p <.001) and the number of sleep diary entries (β = .28; p <.001). Conclusion These results confirmed that increased interaction with the platform positively influences treatment effectiveness and that increased use at the beginning of treatment appears to be a good predictor of treatment completion. This study confirms the importance of sustaining participants’ commitment to online treatment in order to optimize its effectiveness.
-
Dam spillways are susceptible to a range of engineering challenges including structural deficiencies, insufficient discharge capacity, and mechanical failures; however, a particularly significant issue is hydraulic erosion, which poses a significant threat to dam infrastructure. This necessitates a comprehensive assessment of both hydraulic and rock mechanical parameters to ensure structural integrity and operational resilience. In the rock mechanical aspect of hydraulic erosion, the resistive capacity of the material holds great importance, while in the hydraulic aspect, the erosive force of water plays a pivotal role. Hence, neglecting these incidents would increase the risk of overtopping and subsequent downstream flooding, thereby impacting the overall safety and operational reliability of the dam. This study focuses on investigating the hydraulic parameters of a smooth surface unlined open channel spillway. By utilizing both numerical modeling and experimental analysis, we aim to explore how variations in these parameters impact erosion in dams’ spillways. The research centers on the Romaine 4 dam spillway, situated in the northeastern region of Quebec in Canada as a representative case study. The physical model of this spillway was constructed at the Université du Québec à Chicoutimi, where we carried out the experimental analyses. In this research, we also conducted a comprehensive numerical analysis using Finite Volume Method (FVM), enabling a detailed examination of three-dimensional flow behavior within the spillway. This enabled a precise monitoring of the fluid motion patterns. Moreover, an experimental approach was utilized to enhance the accuracy and reliability of the results. This involved conducting detailed tests on the reduced-scale model using a XYZ robotic system capable of movement in X,Y,Z directions and capturing position, velocity and pressure. The results of numerical and experimental analyses reveal that the numerical model effectively captures the overall flow characteristics, closely predicting the average velocity throughout the channel. However, it indicates limitations in accurately predicting extreme velocities, such as maximum and minimum values. The results show that the maximum discrepancies between experimental and numerical data primarily concern extreme velocities, with the numerical model underestimating maximum velocities and overestimating minimum velocities, with errors more pronounced at higher flow rates and upstream. This discrepancy can reach up to 60% in certain areas. Furthermore, the study examined the effects of gates on variability of hydraulic parameters like flow depth and velocity. The analysis of a number of gate configurations revealed that double-gate spillways maintain more consistent flow depths across all significant cross-sections. By explaining the complex interaction between hydraulic behavior and spillway design, this research attempts to advance our understanding of hydraulic-prone erosion areas in dam spillways and ensure the long-term resilience of dam infrastructure. Les évacuateurs de crues des barrages sont sujets à divers défis d'ingénierie, incluant des défaillances structurelles, une capacité d'évacuation insuffisante et des pannes mécaniques; cependant, l'érosion hydraulique constitue une problématique particulièrement importante qui menace l'infrastructure des barrages. Il est donc nécessaire d’évaluer de manière approfondie les paramètres hydrauliques et mécaniques des roches afin d’assurer l’intégrité structurelle et la résilience opérationnelle. Dans l’aspect mécanique des roches concernant l’érosion hydraulique, la capacité de résistance du matériau revêt une grande importance, tandis que dans l’aspect hydraulique, la force érosive de l’eau joue un rôle essentiel. Par conséquent, ignorer ces phénomènes augmenterait le risque de débordement et d’inondation en aval, impactant ainsi la sécurité et la fiabilité opérationnelle globale du barrage. Cette étude se concentre sur l’analyse des paramètres hydrauliques d'un évacuateur de crues à canal ouvert non revêtu et à surface lisse. En utilisant à la fois la modélisation numérique et l’analyse expérimentale, nous visons à explorer comment les variations de ces paramètres influencent l’érosion dans les évacuateurs de crues des barrages. La recherche porte sur l’évacuateur de crues du barrage Romaine 4, situé dans la région nord-est du Québec au Canada, en tant qu’étude de cas représentative. Le modèle physique de cet évacuateur a été construit à l’Université du Québec à Chicoutimi, où nous avons effectué les analyses expérimentales. Dans cette recherche, nous avons également réalisé une analyse numérique complète en utilisant la méthode des volumes finis (FVM), permettant un examen détaillé du comportement tridimensionnel de l’écoulement dans l’évacuateur. Cela a permis un suivi précis des schémas de mouvement du fluide. En outre, une approche expérimentale a été utilisée pour accroître la précision et la fiabilité des résultats, en réalisant des tests détaillés sur le modèle réduit à l’aide d’un système robotisé XYZ qui est capable de se déplacer dans trois directions (X, Y, Z), pour effectuer des prises de mesures de position, vitesse et pression. Les résultats des analyses numériques et expérimentales révèlent que le modèle numérique capture efficacement les caractéristiques générales de l’écoulement, prédisant de manière précise la vitesse moyenne dans le canal. Cependant, il présente des limitations dans la prédiction précise des pression dynamique et statique extrêmes comme les valeurs maximales et minimales. Les résultats montrent que les écarts maximaux entre les données expérimentales et numériques concernent principalement les vitesses extrêmes, le modèle numérique sous-estimant les vitesses maximales et surestimant les minimales, avec des erreurs plus marquées aux débits élevés et en amont. Cet écart peut aller jusqu’aux 60% à certains endroits. Par ailleurs, l’étude a examiné les effets des vannes sur la variabilité des paramètres hydrauliques tels que la profondeur de l’écoulement et la vitesse. L’analyse de plusieurs configurations de vannes a révélé que les évacuateurs à double vanne maintiennent des profondeurs d’écoulement plus constantes à travers toutes les sections transversales significatives. En expliquant l’interaction complexe entre le comportement hydraulique et la conception des évacuateurs de crues, cette recherche vise à améliorer notre compréhension des zones sujettes à l’érosion hydraulique dans les évacuateurs de barrages et à assurer la résilience à long terme de l’infrastructure des barrages.
-
Abstract Accurately modeling the interactions between inland water bodies and the atmosphere in meteorological and climate models is crucial, given the marked differences with surrounding landmasses. Modeling surface heat fluxes remains a challenge because direct observations available for validation are rare, especially at high latitudes. This study presents a detailed evaluation of the Canadian Small Lake Model (CSLM), a one-dimensional mixed-layer dynamic lake model, in reproducing the surface energy budget and the thermal stratification of a subarctic reservoir in eastern Canada. The analysis is supported by multiyear direct observations of turbulent heat fluxes collected on and around the 85-km 2 Romaine-2 hydropower reservoir (50.7°N, 63.2°W) by two flux towers: one operating year-round on the shore and one on a raft during ice-free conditions. The CSLM, which simulates the thermal regime of the water body including ice formation and snow physics, is run in offline mode and forced by local weather observations from 25 June 2018 to 8 June 2021. Comparisons between observations and simulations confirm that CSLM can reasonably reproduce the turbulent heat fluxes and the temperature behavior of the reservoir, despite the one-dimensional nature of the model that cannot account for energy inputs and outputs associated with reservoir operations. The best performance is achieved during the first few months after the ice break-up (mean error = −0.3 and −2.7 W m −2 for latent and sensible heat fluxes, respectively). The model overreacts to strong wind events, leading to subsequent poor estimates of water temperature and eventually to an early freeze-up. The model overestimated the measured annual evaporation corrected for the lack of energy balance closure by 5% and 16% in 2019 and 2020. Significance Statement Freshwater bodies impact the regional climate through energy and water exchanges with the atmosphere. It is challenging to model surface energy fluxes over a northern lake due to the succession of stratification and mixing periods over a year. This study focuses on the interactions between the atmosphere of an irregular shaped northern hydropower reservoir. Direct measurements of turbulent fluxes using an eddy covariance system allowed the model assessment. Turbulent fluxes were successfully predicted during the open water period. Comparison between observed and modeled time series showed a good agreement; however, the model overreacted to high wind episodes. Biases mostly occur during freeze-up and breakup, stressing the importance of a good representation of the ice cover processes.
-
Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.
-
La modélisation numérique des estuaires hypertidaux intéresse particulièrement les ingénieurs impliqués dans la navigation maritime et le développement de projets d'énergie marémotrice. Au Québec (Canada), la majorité de ces estuaires à marée extrême sont situés dans des régions isolée de l'Arctique canadien et sont souvent des lieux de résidence des communautés autochtones du Nord canadien. La présente thèse vise à mieux comprendre les processus se manifestent dans ces environnements, avec une emphase particulière sur l'importance (1) de la forte dominance des marées, (2) de l'extrême variabilité bathymétrique et (3) de l'immense forçage climatique. La thèse tente de démontrer comment les modèles numériques peuvent être utilisés pour traiter ces particularités et peuvent être la meilleure méthode disponible pour étudier leurs effets dans des environnements éloignés peu étudies. Premièrement, dans le but d'évaluer le potentiel de courant de marée en eau libre (sans glace) de l'estuaire hypertidal de la rivière Koksoak (KRE), nous avons modélisé le débit de marée en utilisant un model numérique hydrodynamique réputé (Delft3D). Différents aspects de l'hydrodynamique côtière ont été étudiés grâce à la modélisation numérique 1D2D-3D. La variabilité spatio-temporelle de la densité de puissance hydrocinétique disponible a ensuite été quantifiée. Les résultats ont révélé l'énorme potentiel (1000 MW) d'énergie marémotrice présente à plusieurs endroits le long de l'estuaire, ce qui nécessite des études numériques plus approfondies. En mettant davantage l'accent sur la modélisation numérique du site, par exemple la publication d'un Atlas des courants de marée pour aider à la navigation maritime dans le KRE, nous avons constaté que certains problèmes de modélisation des estuaires n'étaient pas abordés. Compte tenu des conditions limites précises et des mesures in situ recueillies au cours de l'hiver 2017-2018, nous avons constaté que les meilleurs résultats pour l'étalonnage du modèle (niveau d'eau) en utilisant les paramètres/options disponibles conduisaient encore à certains ordres d'imprécision. sur les conditions aux limites de formse qualité (campagnes 2017-2018) qui ont effectivement amélioré les résultats numériques, nous avons constaté que les meilleurs résultats pour l'étalonnage du modèle (niveau d'eau) en utilisant les paramètres/options disponibles étaient encore associés à certains ordres d'imprécision. Par conséquent, l'objectif du deuxième travail était d'améliorer l'efficacité de la modélisation hydrodynamique pour les environnements de marée peu profonde. Nous avons introduit quelques hypothèses décrivant pourquoi les modèles de turbulence et de rugosité disponibles ne sont pas bien adaptés à la modélisation des estuaires avec de fortes variabilités spatiales et temporelles des profondeurs de marée. En conséquence (i) un modèle de turbulence k-ε étendu pour la paramétrisation adaptative de la viscosité turbulente en fonction de la profondeur, et une approche basée sur la direction de l'écoulement pour la paramétrisation de la rugosité du lit ont été développés, incorporés dans le modèle hydrodynamique employé (Delft3D). Le modèle modifié a montré une amélioration constante des prévisions du modèle dans les stations de champ proche et de champ lointain, par rapport aux schémas de paramétrage classiques. Enfin, un aspect manquant et mal compris des estuaires de latitude nordique est l'immense impact de l'hiver sur le flux des marées. Situé à la latitude 58°, le KRE subit l'effet intensif du climat arctique pendant la majeure partie de l'année, ce qui entraîne la formation de glace estuarienne rapide sur une grande partie de sa longueur. Plus précisément, et ce qui est le plus pertinent pour cette recherche, il est important de savoir comment le long hiver affecte les potentiels hydrocinétiques des estuaires des régions froides. Ainsi, la surfusion entraîne la formation de frasil et de glace de fond qui peuvent adhérer aux pales des turbines et provoquer leur dysfonctionnement. Dans les estuaires, la surfusion a une nature transitoire complexe car le point de congélation de l'eau salée est une fonction de la salinité et de la profondeur qui est changée par les marées au cours des cycles de marée. En raison du manque de données de terrain en hiver, nous avons collecté des paramètres hydrodynamiques en utilisant de nouvelles campagne de mesures en hiver 2018. Les observations ont montré que le risque de surfusion diminue à l'intérieur de l'estuaire, car en l'absence de débit fluvial, la salinité peut s'infiltrer beaucoup plus loin dans le fleuve. À l'intérieur, une modulation apparente de ∆T (la différence entre la température de l'eau et la température de congélation de l'eau), dépendant de la marée, a été observée avec une augmentation de la température pendant des marées montantes. Cette augmentation retarderait la surfusion, ce qui est un avantage majeur pour turbines. En réglant le module Delft3D-Ice, différents scénarios ont été définis pour l'étendue et l'épaisseur de la couvert de glace, et leurs réponses hydrodynamiques ont été analysées. Il a été démontré que la glace a des impacts complexes et non uniformes sur les caractéristiques hydrodynamiques de la KRE. Surtout, le débit des prismes de marée, qui est la principale source d'élan, peut être modifiée de manière démonstrative par la couverture de glace et la glace de marée plate. Les résultats suggèrent que les zones énergétiques sont légèrement affectées par la glace pendant la plus grande partie de l'hiver. Pendant l'hiver de pointe seulement, la glace pourrait considérablement diminuer densité moyenne de puissance des courants (par exemple, la puissance moyenne est égale ou supérieure à 7 kW m-2). Ces implications cryohydrodynamiques indiquent que l'hiver arctique n'est pas un obstacle à la production d'électricité dans le fleuve Koksoak, et l'énergie marémotrice serait un avantage annuel pour Kuujjuaq
-
The contemporary definition of integrated water resources management (IWRM) is introduced to promote a holistic approach in water engineering practices. IWRM deals with planning, design and operation of complex systems in order to control the quantity, quality, temporal and spatial distribution of water with the main objective of meeting human and ecological needs and providing protection from water related disasters. This paper examines the existing decision making support in IWRM practice, analyses the advantages and limitations of existing tools, and, as a result, suggests a generic multi-method modeling framework that has the main goal to capture all structural complexities of, and interactions within, a water resources system. Since the traditional tools do not provide sufficient support, this framework uses multi-method simulation technique to examine the codependence between water resources system and socioeconomic environment. Designed framework consists of (i) a spatial database, (ii) a traditional process-based model to represent the physical environment and changing conditions, and (iii) an agent-based spatially explicit model of socio-economic environment. The multi-agent model provides for building virtual complex systems composed of autonomous entities, which operate on local knowledge, possess limited abilities, affect and are affected by local environment, and thus, enact the desired global system behavior. Agent-based model is used in the presented work to analyze spatial dynamics of complex physical-social-economic-biologic systems. Based on the architecture of the generic multi-method modeling framework, an operational model for the Upper Thames River basin, Southwestern Ontario, Canada, is developed in cooperation with the local conservation authority. Six different experiments are designed by combining three climate and two socio-economic scenarios to analyze spatial dynamics of a complex physical-social-economic system of the Upper Thames River basin. Obtained results show strong dependence between changes in hydrologic regime, in this case surface runoff and groundwater recharge rates, and regional socio-economic activities.
-
<p>In snow-prone regions, snowmelt is one of the main drivers of runoff. For operational flood forecasting and mitigation, the spatial distribution of snow water equivalent (SWE) in near real time is necessary. In this context, in situ observations of SWE provide a valuable information. Nonetheless, the high spatial variability of snowpack characteristics makes it necessary to implement some kind of snow modelling to get a spatially continuous estimation. Data assimilation is thus a useful approach to combine information from both observation and modeling in near real-time. </p><p>For example, at the provincial government of Quebec (eastern Canada), the HYDROTEL Snowpack Model is applied on a daily basis over a 0.1 degree resolution mesh covering the whole province. The modelled SWE is corrected in real time by in situ manual snow survey which are assimilated using a spatial particles filter (Cantet et al., 2019). This assimilation method improves the reliability of SWE estimation at ungauged sites.</p><p>The availability of manual snow surveys is however limited both in space and time. These measurements are conducted on a bi-weekly basis in a limited number of sites. In order to further improve the temporal and spatial observation coverage, alternative sources of data should be considered.</p><p>In this research, it is hypothesized that data gathered by SR50 sonic sensors can be assimilated in the spatial particle filter to improve the SWE estimation. These automatic sensors provide hourly measurements of snow depth and have been deployed in Quebec since 2005. Beforehand, probabilistic SWE estimations were derived from the SR50 snow depth measurements using an ensemble of artificial neural networks (Odry et al. 2019). Considering the nature of the data and the conversion process, the uncertainty associated with this dataset is supposed larger than for the manual snow surveys. The objective of the research is to evaluate the potential interest of adding this lower-quality information in the assimilation framework.</p><p>The addition of frequent but uncertain data in the spatial particle filter required some adjustments in term of assimilation frequency and particle resampling. A reordering of the particles was implemented to maintain the spatial coherence between the different particles. With these changes, the consideration of both manual snow surveys and SR50 data in the spatial particle filter reached performances that are comparable to the initial particle filter that combines only the model and manual snow survey for estimating SWE in ungauged sites. However, the addition of SR50 data in the particle filter allows for continuous information in time, between manual snow surveys.</p><p>&#160;</p><p><strong>References:</strong></p><p>Cantet, P., Boucher, M.-A., Lachance-Coutier, S., Turcotte, R., Fortin, V. (2019). Using a particle filter to estimate the spatial distribution of the snowpack water equivalent. J. Hydrometeorol, 20.</p><p>Odry, J., Boucher, M.-A., Cantet,P., Lachance-Cloutier, S., Turcotte, R., St-Louis, P.-Y. (2019). Using artificial neural networks to estimate snow water equivalent from snow depth. Canadian water ressources journal (under review)</p>
-
Abstract. River ice is a common occurrence in cold climate hydrological systems. The annual cycle of river ice formation, growth, decay and clearance can include low flows and ice jams, as well as mid-winter and spring break-up events. Reports and associated data on river ice occurrence are often limited to site and season-specific studies. Within Canada, the National Hydrometric Program (NHP) operates a network of gauging stations with water level as the primary measured variable to derive discharge. In the late 1990s, the Water Science and Technology Directorate of Environment and Climate Change Canada initiated a long-term effort to compile, archive and extract river ice related information from NHP hydrometric records. This data article describes the original research data set produced by this near 20-year effort: the Canadian River Ice Database (CRID). The CRID holds almost 73,000 variables from a network of 196 NHP stations throughout Canada that were in operation within the period 1894 to 2015. Over 100,000 paper and digital files were reviewed representing 10,378 station-years of active operation. The task of compiling this database involved manual extraction and input of more than 460,000 data entries on water level, discharge, date, time and data quality rating. Guidelines on the data extraction, rating procedure and challenges are provided. At each location, a time series of up to 15 variables specific to the occurrence of freeze-up and winter-low events, mid-winter break-up, ice thickness, spring break-up and maximum open-water level were compiled. This database follows up on several earlier efforts to compile information on river ice, which are summarized herein, and expands the scope and detail for use in Canadian river ice research and applications. Following the Government of Canada Open Data initiative, this original river ice data set is available at: https://doi.org/10.18164/c21e1852-ba8e-44af-bc13-48eeedfcf2f4 (de Rham et al., 2020).
-
Improving Disaster Preparedness Through Mutual Catastrophe Insurance In “A Mutual Catastrophe Insurance Framework for Horizontal Collaboration in Prepositioning Strategic Reserves,” H. Zbib, B. Balcik, M.-È. Rancourt, and G. Laporte present an innovative approach to collaborative disaster preparedness. The novel framework considers a risk-averse mutual insurer offering multiyear insurance contracts with coverage deductibles and limits to a portfolio of risk-averse policyholders. It is designed to foster horizontal collaboration among policyholders for joint disaster preparedness by effectively integrating operational and financial functions. The problem is modeled as a large-scale nonlinear multistage stochastic program and solved by using an effective Benders decomposition algorithm. The framework is validated with real data from 18 Caribbean countries focusing on hurricane preparedness. Given the predicted impacts of climate change, the proposed multiyear mutual catastrophe insurance framework promises to reshape global disaster preparedness and make a profound societal impact by providing a transparent disaster financing plan to protect vulnerable regions. The study’s findings stress the importance of long-term cooperation, prenegotiation of indemnification policies, and strategic setting of deductibles and limits by taking into account the correlation between policyholders. , We develop a mutual catastrophe insurance framework for the prepositioning of strategic reserves to foster horizontal collaboration in preparedness against low-probability high-impact natural disasters. The framework consists of a risk-averse insurer pooling the risks of a portfolio of risk-averse policyholders. It encompasses the operational functions of planning the prepositioning network in preparedness for incoming insurance claims, in the form of units of strategic reserves, setting coverage deductibles and limits of policyholders, and providing insurance coverage to the claims in the emergency response phase. It also encompasses the financial functions of ensuring the insurer’s solvency by efficiently managing its capital and allocating yearly premiums among policyholders. We model the framework as a very large-scale nonlinear multistage stochastic program, and solve it through a Benders decomposition algorithm. We study the case of Caribbean countries establishing a horizontal collaboration for hurricane preparedness. Our results show that the collaboration is more effective when established over a longer planning horizon, and is more beneficial when outsourcing becomes expensive. Moreover, the correlation of policyholders affected simultaneously under the extreme realizations and the position of their claims in their global claims distribution directly affects which policyholders get deductibles and limits. This underlines the importance of prenegotiating policyholders’ indemnification policies at the onset of collaboration. Funding: G. Laporte and M.-È. Rancourt were funded by the Canadian Natural Sciences and Engineering Research Council (NSERC) [Grants 2015-06189 and 2022-04846]. Funding was also provided by the Institute for Data Valorisation (IVADO) and the Canada Research Chair in Humanitarian Supply Chain Analytics. B. Balcik was partially supported by a grant from the Scientific and Technological Research Council of Turkey (TUBITAK) 2219 program. This support is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2021.0141 .