Votre recherche
Résultats 30 ressources
-
Floods pose a substantial risk to human well-being. These risks encompass economic losses, infrastructural damage, disruption of daily life, and potential loss of life. This study presents a state-wide and county-level spatial exposure assessment of the Iowa railway network, emphasizing the resilience and reliability of essential services during such disasters. In the United States, the railway network is vital for the distribution of goods and services. This research specifically targets the railway network in Iowa, a state where the impact of flooding on railways has not been extensively studied. We employ comprehensive GIS analysis to assess the vulnerability of the railway network, bridges, rail crossings, and facilities under 100- and 500-year flood scenarios at the state level. Additionally, we conducted a detailed investigation into the most flood-affected counties, focusing on the susceptibility of railway bridges. Our state-wide analysis reveals that, in a 100-year flood scenario, up to 9% of railroads, 8% of rail crossings, 58% of bridges, and 6% of facilities are impacted. In a 500-year flood scenario, these figures increase to 16%, 14%, 61%, and 13%, respectively. Furthermore, our secondary analysis using flood depth maps indicates that approximately half of the railway bridges in the flood zones of the studied counties could become non-functional in both flood scenarios. These findings are crucial for developing effective disaster risk management plans and strategies, ensuring adequate preparedness for the impacts of flooding on railway infrastructure. © 2025 by the authors.
-
Coastal high tide flooding doubled in the U.S. between 2000 and 2022 and sea level rise (SLR) due to climate change will dramatically increase exposure and vulnerability to flooding in the future. However, standards for elevating buildings in flood hazard areas, such as base flood elevations set by the Federal Emergency Management Agency, are based on historical flood data and do not account for future SLR. To increase flood resilience in flood hazard areas, federal, state, regional, and municipal planning initiatives are developing guidance to increase elevation requirements for occupied spaces in buildings. However, methods to establish a flood elevation that specifically accounts for rising sea levels (or sea level rise-adjusted design flood elevation (SLR-DFE)) are not standardized. Many municipalities or designers lack clear guidance on developing or incorporating SLR-DFEs. This study compares guidance documents, policies, and methods for establishing an SLR-DFE. The authors found that the initiatives vary in author, water level measurement starting point, SLR scenario and timeframe, SLR adjustment, freeboard, design flood elevation, application (geography and building type), and whether it is required or recommended. The tables and graph compare the different initiatives, providing a useful summary for policymakers and practitioners to develop SLR-DFE standards. © 2025 by the authors.
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Questions have been raised about the correctness of water quality models with complete mixing assumptions in cross junctions of water distribution systems. Recent developments in the mixing phenomenon within cross junctions of water distribution networks (WDNs) have heightened the need for evaluating the existing incomplete mixing models under real-world conditions. Therefore, in this study, two cross junctions with pipe diameters of 100 Â 100 Â 100 Â 100 mm and 150 Â 150 Â 150 Â 150 mm were employed in laboratory experiments to evaluate six existing incomplete mixing models for 25 flow rate scenarios ranging between 1.5 and 3.0 L/s. It was observed that within the same flow rate scenario, the degree of mixing in a cross junction with a pipe relative roughness of 6.00 Â 10À5 (pipe diameter of 25 mm) was higher than that in a cross junction with a pipe relative roughness of 3.00 Â 10À5 (pipe diameter of 50 mm) and smaller. Considering the real-world size of pipes in evaluating the incomplete mixing models showed that two incomplete mixing models, AZRED and the one by Shao et al., had the best accordance with the results of the laboratory experiments.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Les inondations de 2017 et 2019 au Québec ont affecté respectivement 293 et 240 municipalités. Ces inondations ont généré une cascade d’évènements stressants (stresseurs primaires et secondaires) qui ont eu des effets sur la santé mentale de la population et retardé le processus de rétablissement des individus. Cette période de rétablissement peut s’échelonner sur plusieurs mois voire plusieurs années. Cette étude s’inscrit dans la spécificité de la recherche mixte mise de l’avant à travers trois stratégies de recherche, réalisées de façon séquentielle : 1) sondage populationnelle réalisé auprès de 680 personnes, 2) analyse de documents produits par les organisations participant au processus de rétablissement social des sinistrés, ou sur des analyses externes portant sur ces interventions de rétablissement et 3) entrevues semi-dirigées auprès de 15 propriétaires occupants ayant complété une demande d’indemnisation à la suite des inondations de 2019 et auprès de 11 professionnels et gestionnaires participant au processus de rétablissement social. Les entrevues semi-dirigées et les questionnaires complétés par les personnes sinistrées lors des inondations de 2019 démontrent que les principales sources de stress ayant des impacts sur la santé et le bien-être des répondants sont : 1) l’absence d’avertissement et la vitesse de la montée des eaux; 2) l’obligation de se relocaliser et la peur d’être victime de pillage; 3) le manque de solidarité et d’empathie de la part de certains employés du MSP; 4) la gestion des conflits familiaux; 5) la gestion de problèmes de santé nouveaux ou préexistants; 6) la complexité des demandes d’indemnisation; 7) la lourdeur et les délais des travaux de nettoyage ou de restauration; 8) les indemnités inférieures aux coûts engendrés par l’inondation; 9) les pertes matérielles subies, particulièrement ceux d’une valeur de plus de 50 000 $; et 10) la diminution anticipée de la valeur de sa résidence. À cela s’ajoute l’insatisfaction à l’égard du programme d’indemnisation du gouvernement du Québec (PGIAF) qui fait plus que doubler la prévalence des symptômes de stress post-traumatique. Les inondations entraînent également une perte de satisfaction ou de bien-être statistiquement significative. La valeur monétaire de cette perte de jouissance peut être exprimée en équivalent salaires. En moyenne, cette diminution du bien-être équivaut à une baisse de salaire de 60 000$ pour les individus ayant vécu une première inondation et à 100 000$ pour les individus ayant vécu de multiples inondations. Ces résultats suggèrent que les coûts indirects et intangibles représentent une part importante des dommages découlant des inondations. Ce projet de recherche vise également à analyser l’application du PGIAF et son influence sur les stresseurs vécus par les sinistrés dans le contexte de la pandémie de COVID-19. La principale recommandation de cette étude repose sur une analyse de documents, un sondage populationnel et des entrevues semi-dirigées. Ainsi, s’attaquer à la réduction de principaux stresseurs nécessite 1) d’améliorer la gouvernance du risque d’inondation, 2) d’intensifier la communication et le support aux sinistrés, et 3) de revoir les mécanismes d’indemnisation existants.
-
Abstract Measuring freshwater submerged aquatic vegetation (SAV) biomass at large spatial scales is challenging, and no single technique can cost effectively accomplish this while maintaining accuracy. We propose to combine and intercalibrate accurate quadrat‐scuba diver technique, fast rake sampling, and large‐scale echosounding. We found that the overall relationship between quadrat and rake biomass is moderately strong (pseudo R 2 = 0.61) and varies with substrate type and SAV growth form. Rake biomass was also successfully estimated from biovolume (pseudo R 2 = 0.57), a biomass proxy derived from echosounding. In addition, the relationship was affected, in decreasing relevance, by SAV growth form, flow velocity, acoustic data quality, depth, and wind conditions. Sequential application of calibrations yielded predictions in agreement with quadrat observations, but echosounding predictions underestimated biomass in shallow areas (< 1 m) while outperforming point estimation in deep areas (> 3 m). Whole‐system quadrat‐equivalent biomass from echosounding differed by a factor of two from point survey estimates, suggesting echosounding is more accurate at larger scales owing to the increased sample size and better representation of spatial heterogeneity. To decide when an individual or a combination of techniques is profitable, we developed a step‐by‐step guideline. Given the risks of quadrat‐scuba diver technique, we recommend developing a one‐time quadrat–rake calibration, followed by the use of rake and echosounding when sampling at larger spatial and temporal scales. In this case, rake sampling becomes a valid ground truthing method for echosounding, also providing valuable species information and estimates in shallow waters where echosounding is inappropriate.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
Abstract Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydrological data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the present research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL in terms of accuracy when assessing groundwater quality using irrigation indices.
-
Cette thèse traite des aspects de la quantification de l'incertitude dans l'évaluation des ressources éoliennes avec les pratiques d'analyses d'incertitude et de sensibilité. Les objectifs de cette thèse sont d'examiner et d'évaluer la qualité des pratiques d'analyse de sensibilité dans l'évaluation des ressources éoliennes, de décourager l'utilisation d'une analyse de sensibilité à la fois, d'encourager l'utilisation d'une analyse de sensibilité globale à la place, d'introduire des méthodes d'autres domaines., et montrer comment les analyses d'incertitude et de sensibilité globale ajoutent de la valeur au processus d'aide à la décision. Cette thèse est organisée en quatre articles : I. Une revue des pratiques d'analyse de sensibilité dans l'évaluation des ressources éoliennes avec une étude de cas de comparaison d'analyses de sensibilité individuelles et globales du coût actualisé de l'énergie éolienne offshore ; II. Technique Quasi-Monte Carlo dans l'analyse de sensibilité globale dans l'évaluation des ressources éoliennes avec une étude de cas sur les Émirats Arabes Unis; III. Utilisation de la famille de distribution Halphen pour l'estimation de la vitesse moyenne du vent avec une étude de cas sur l'Est du Canada; IV. Étude d'évaluation des ressources éoliennes offshore du golfe Persique avec les données satellitaires QuikSCAT.Les articles I à III ont chacun donné lieu à une publication évaluée par des pairs, tandis que l'article IV - à une soumission. L'article I propose des classifications par variable de sortie d'analyse de sensibilité, méthode, application, pays et logiciel. L'article I met en évidence les lacunes de la littérature, fournit des preuves des pièges, conduisant à des résultats d'évaluation erronés et coûteux des ressources éoliennes. L'article II montre comment l'analyse de sensibilité globale offre une amélioration au moyen du quasi-Monte Carlo avec ses plans d'échantillonnage élaborés permettant une convergence plus rapide. L'article III introduit la famille de distribution Halphen pour l'évaluation des ressources éoliennes. Article IV utilise les données satellitaires SeaWinds/QuikSCAT pour l'évaluation des ressources éoliennes offshore du golfe Persique. Les principales contributions à l'état de l'art avec cette thèse suivent. À la connaissance de l'auteur, aucune revue de l'analyse de sensibilité dans l'évaluation des ressources éoliennes n'est actuellement disponible dans la littérature, l'article I en propose une. L'article II relie la modélisation mathématique et l'évaluation des ressources éoliennes en introduisant la technique de quasi-Monte Carlo dans l'évaluation des ressources éoliennes. L'article III présente la famille de distribution de Halphen, de l'analyse de la fréquence des crues à l'évaluation des ressources éoliennes. <br /><br />This dissertation deals with the aspects of quantifying uncertainty in wind resource assessment with the practices of uncertainty and sensitivity analyses. The objectives of this dissertation are to review and assess the quality of sensitivity analysis practices in wind resource assessment, to discourage the use of one-at-a-time sensitivity analysis, encourage the use of global sensitivity analysis instead, introduce methods from other fields, and showcase how uncertainty and global sensitivity analyses adds value to the decision support process. This dissertation is organized in four articles: I. Review article of 102 feasibility studies: a review of sensitivity analysis practices in wind resource assessment with a case study of comparison of one-at-a-time vs. global sensitivity analyses of the levelized cost of offshore wind energy; II. Research article: Quasi-Monte Carlo technique in global sensitivity analysis in wind resource assessment with a case study on United Arab Emirates; III. Research article: Use of the Halphen distribution family for mean wind speed estimation with a case study on Eastern Canada; IV. Application article: Offshore wind resource assessment study of the Persian Gulf with QuikSCAT satellite data. Articles I-III have each resulted in a peer-reviewed publication, while Article IV – in a submission. Article I offers classifications by sensitivity analysis output variable, method, application, country, and software. It reveals the lack of collective agreement on the definition of sensitivity analysis in the literature, the dominance of nonlinear models, the prevalence of one-at a-time sensitivity analysis method, while one-at-a-time method is only valid for linear models. Article I highlights gaps in the literature, provides evidence of the pitfalls, leading to costly erroneous wind resource assessment results. Article II shows how global sensitivity analysis offers improvement by means of the quasi-Monte Carlo with its elaborate sampling designs enabling faster convergence. Article III introduces the Halphen distribution family for the purpose of wind recourse assessment. Article IV uses SeaWinds/QuikSCAT satellite data for offshore wind resource assessment of the Persian Gulf. The main contributions to the state-of-the-art with this dissertation follow. To the best of author’s knowledge, no review of sensitivity analysis in wind resource assessment is currently available in the literature, Article I offers such. Article II bridges mathematical modelling and wind resource assessment by introducing quasi-Monte Carlo technique to wind resource assessment. Article III introduces the Halphen distribution family from flood frequency analysis to wind resource assessment.
-
Abstract. Dissolved organic carbon (DOC) trends, predominantly showing long-term increases in concentration, have been observed across many regions of the Northern Hemisphere. Elevated DOC concentrations are a major concern for drinking water treatment plants, owing to the effects of disinfection byproduct formation, the risk of bacterial regrowth in water distribution systems, and treatment cost increases. Using a unique 30-year data set encompassing both extreme wet and dry conditions in a eutrophic drinking water reservoir in the Great Plains of North America, we investigate the effects of changing source-water and in-lake water chemistry on DOC. We employ novel wavelet coherence analyses to explore the coherence of changes in DOC with other environmental variables and apply a generalized additive model to understand predictor–DOC responses. We found that the DOC concentration was significantly coherent with (and lagging behind) flow from a large upstream mesotrophic reservoir at long (> 18-month) timescales. DOC was also coherent with (lagging behind) sulfate and in phase with total phosphorus, ammonium, and chlorophyll a concentrations at short (≤ 18-month) timescales across the 30-year record. These variables accounted for 56 % of the deviance in DOC from 1990 to 2019, suggesting that water-source and in-lake nutrient and solute chemistry are effective predictors of the DOC concentration. Clearly, climate and changes in water and catchment management will influence source-water quality in this already water-scarce region. Our results highlight the importance of flow management to shallow eutrophic reservoirs; wet periods can exacerbate water quality issues, and these effects can be compounded by reducing inflows from systems with lower DOC. These flow management decisions address water level and flood risk concerns but also have important impacts on drinking water treatability.
-
Climate anomalies, such as floods and droughts, as well as gradual temperature changes have been shown to adversely affect economies and societies. Although studies find that climate change might increase global inequality by widening disparities across countries, its effects on within-country income distribution have been little investigated, as has the role of rainfall anomalies. Here, we show that extreme levels of precipitation exacerbate within-country income inequality. The strength and direction of the effect depends on the agricultural intensity of an economy. In high-agricultural-intensity countries, climate anomalies that negatively impact the agricultural sector lower incomes at the bottom end of the distribution and generate greater income inequality. Our results indicate that a 1.5-SD increase in precipitation from average values has a 35-times-stronger impact on the bottom income shares for countries with high employment in agriculture compared to countries with low employment in the agricultural sector. Projections with modeled future precipitation and temperature reveal highly heterogeneous patterns on a global scale, with income inequality worsening in high-agricultural-intensity economies, particularly in Africa. Our findings suggest that rainfall anomalies and the degree of dependence on agriculture are crucial factors in assessing the negative impacts of climate change on the bottom of the income distribution.
-
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.