Votre recherche
Résultats 95 ressources
-
The coast is a complex environment that comprises seawater, underwater, soil, atmosphere, and other environmental factors. Traditional and new pollutants, represented by oil spills and microplastic (MPs), persist in posing a constant threat to the ecosystems and social-economic features of coastal regions. Besides, the shoreline is exposed to various environment conditions, which may significantly affect the behaviors of pollutants on beaches. An in-depth understanding of the occurrence and fate of pollutants in coastal areas is a prerequisite for the development of sound prevention and remediation strategies. Firstly, the physicochemical behavior of crude oil on various types of shorelines under different environmental conditions were reviewed. The penetration, remobilization, and retention of stranded oil on shorelines are affected by the beach topography and the natural environment. The attenuation and fate of oil on shorelines from laboratory and field experiments were discussed. In addition, the source, type, distribution, and factors of MPs in the coastal areas were summarized. What is more, the occurrence and environmental risk of emerging plastics waste—personal protective equipment (PPE)—in the coastal environment during and pandemic were discussed. Then, the role of natural nanobubbles (NBs) in the fate and transport of spilled oil were investigated through laboratory experiments and model simulations. NBs significantly increased the concentration of dissolved oxygen as well as changed the pH, zeta potential, and surface tension of the water. With the assistance of external energy, the bulk NBs enhanced the efficiency in oil detachment from the surface of the substrate. At the same time, the surface NBs on the substrate obstructed the downward transport of oil colloids. Considering the behavior between the NBs in two different phases and the oil droplets, the oil droplets tended to bind to the NBs. Next, the behavior and movement of various MPs in the presence of bulk NBs was explored. In the presence of NBs, the binding of MPs and NBs resulted in an increase in the measured average particle size and concentration. The velocity of motion of MPs driven by NBs varies under different salinity conditions. The increase in ionic strength reduced the energy barrier between particles and promoted their aggregation. Thus, the binding of NBs and MPs became more stable, which in turn affected the movement of MPs in the water. Polyethylene (PE1) with small particle size was mainly affected by Brownian motion and its rising was limited, therefore polyethylene (PE2) with large particle size rose faster than PE1 in suspension, especially in the presence of NBs. The effect of nanobubbles on the mobilization of MPs in shorelines subject to seawater infiltration was further studied. The motion of MPs under continuous and transient conditions, as well as the upward transport induced with flood were considered. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the matrix. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under both continuous and transient conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances. Finally, the changing characteristics and environmental behaviors of PPE wastes when exposed to the shoreline environment were examined. The transformation of chain structure and chemical composition of masks and gloves as well as the decreased mechanical strength after UV weathering were observed. In addition, the physical abrasion caused by sand further exacerbated the release of MPs and leachable hazardous contaminates from masks and gloves. In conclusion, the coastal zone is threatened by various pollutants, including traditional pollutants (like the oil spill) and emerging pollutants (like MPs). Due to the complexity of the coastal zone, the occurrence, transport and fate of pollutants can be controlled by many factors, and some factors that are ignored before can also alter the environmental behavior of pollutants in the coastal zone. Natural NBs can change the properties of the water environment and affect the surface properties of the substrate. Bulk NBs contribute to the oil detachment from the sand surface, and surface nanobubbles in the substrate obstruct the downward transport of oil colloids. The behavior and mobilization of MPs in the coastal `zone are subject to mutual forces between the substrate, MPs, NBs, and other factors. Coastal zones are not only the main receptor of pollutants from oceans and lands but also play a key role in their fate and transport.
-
Natural calamities like floods and droughts pose a significant threat to humanity, impacting millions of people each year and incurring substantial economic losses to society. In response to this challenge, this thesis focuses on developing advanced machine learning techniques to improve water height prediction accuracy that can aid municipalities in effective flood mitigation. The primary objective of this study is to evaluate an innovative architecture that leverages Long Short Term Networks - neural networks to predict water height accurately in three different environmental scenarios, i.e., frazil, droughts and floods due to snow spring melt. A distinguishing feature of our approach is the incorporation of meteorological forecast as an input parameter into the prediction model. By modeling the intricate relationships between water level data, historical meteorological data and meteorological forecasts, we seek to evaluate the impact of meteorological forecasts and if any inaccuracies could impact water-level prediction. We compare the outcomes obtained by incorporating next-hour, next-day and next-week meteorological data into our novel LSTM model. Our results indicate a comprehensive comparison of the usage of various parameters as input and our findings suggest that accurate weather forecasts are crucial in achieving reliable water height predictions. Additionally, this study focuses on the utilization of IoT sensor data in combination with ML models to enhance the effectiveness of flood prediction and management. We present an online machine learning approach that performs online training of the model using real-time data from IoT sensors. The integration of live sensor data provides a dynamic and adaptive system that demonstrates superior predictive capabilities compared to traditional static models. By adopting these advanced techniques, we can mitigate the adverse impacts of natural catastrophes and work towards building more resilient and disaster-resistant communities.
-
Streamflow forecasting is important for managing water resources in sectors like agriculture, hydropower, drought management, and urban flood prevention planning. Our study examines short and long lead-times to create a framework for streamflow forecasting that can benefit water resource management and related sectors. To improve streamflow forecasts for up to ten days of lead-time, the study first focuses on improving initial conditions using an ensemble Kalman filter as a data assimilation method. The goal is to regulate the hyperparameters of the ensemble Kalman filter for each season to produce more accurate forecasts. A sensitivity analysis is conducted to identify the best hyperparameter sets for each season, including uncertainty in temperature, precipitation, observed streamflow, and the water content of three state variables - vadose zone, saturated zone, and snowpack - from the CEQUEAU model. Results indicate that improving initial conditions with the ensemble Kalman filter produces more skillful forecasts until a 6-day leadtime. Temperature uncertainty is particularly sensitive and varies across seasons. The vadose zone state variable was identified as the most important and sensitive state variable, and updating all state variables systematically may not be necessary for improving forecast skill. Recent machine learning advances are improving short-term streamflow forecasting. One such method is the Long Short-Term Memory (LSTM) model. In general, neural networks learn from regression as relationships exist between input-output. However, LSTM models have a feature named ‘forget gate’, which enables them to learn the relationship between inputs (e.g., temperature and precipitation) and output (streamflow), and also to capture temporal dependencies in the data. The study aimed to compare the performance of the Long ShortTerm Memory (LSTM) model with data assimilation-based and process-based hydrological models in short-term streamflow forecasting. All three models were tested using the same ensemble weather forecasts. The LSTM model demonstrated good performance in forecasting streamflow, with a Kling-Gupta efficiency (KGE) greater than 0.88 for 9 lead-times. The LSTM model did not incorporate data assimilation, but it benefited from observed streamflow until the last day before the forecast. This is because the LSTM model learned and incorporated knowledge from the previous days while issuing forecasts, similar to how data assimilation updates initial conditions. The study results also showed that the LSTM model had better performance up to day 6 of lead-time compared to the data assimilation-based models. However, training the LSTM model separately for each lead-time is a time-consuming process and is a disadvantage compared to the data assimilation-based methods. Nonetheless, the study demonstrated the potential of machine learning techniques in improving streamflow forecasting. The forecasting of streamflow for long lead-times such as a month usually involves the use of historical meteorological data to create probable future scenarios, as meteorological forecasts become unreliable beyond this lead-time. In this study, we proposed a novel method for streamflow forecasting based on ensemble streamflow forecasting (ESP) filtering, using a Genetic Algorithm (GA) to filter forecast scenarios. This method quantifies the potential of historical data for each basin. This potential could be utilized to enhance the accuracy of streamflow forecasts. We sorted the selected and unselected scenarios to find out the common features between them, but the results did not help distinguish between the two groups. Nonetheless, the GA method can be used as a benchmark for future studies to improve longterm streamflow forecasting. This method can also be used to compare different forecast methods based on the potential shown by the GA method for a specific size of ESP members. For instance, if a method uses large-scale climate signals to filter ESP members, the forecast skill result could be compared with the potential of historical data for that particular size of ESP members.
-
Flooding, a major natural calamity, severely threatens communities and infrastructures in areas susceptible to floods. Consequently, implementing an Internet of Things (IoT)-based flood monitoring system becomes crucial. Existing flood monitoring systems lack a comprehensive and scalable IoT platform to collect real-time data from diverse sensors efficiently, visualize flood information, and provide accurate water level forecasts. This thesis proposes a complete system designed to address the challenges associated with efficient data collection and flood monitoring from diverse IoT sensors. Our proposition involves creating and deploying a centralized system known as HYDROSIGHT, which facilitates the real-time gathering, monitoring, and visualization of flooding-related sensor data. HYDROSIGHT system also provides a log monitoring feature for effective debugging and troubleshooting. The IoT environment for flood monitoring and prediction system was designed to promote sustainability and autonomy by preferring sensors with minimal footprints and compatibility with solar panels. The system architecture leverages a 4G network for seamless data transmission. To validate the practical applicability of the proposed design,HYDROSIGHT system was tested at two municipalities of Quebec, namely Terrebonne, and Lac-Supérieur. In addition, the platform was also deployed at the Ericsson facility in Montreal to test the 5G capabilities. The deployment in these locations allowed us to evaluate the performance and effectiveness of the HYDROSIGHT system in a real flood monitoring environment. In addition to implementing the IoT testbed, a preliminary machine learning tool was developed on water level forecasting. In this experiment, we opted for an online machine-learning approach, recognizing the significance of real-time updates and low computational resources of IoT devices. Leveraging the constantly updating data from HYDROSIGHT, we trained and tested our online machine-learning model, enhancing its forecasting capabilities. We conducted a comparative analysis to understand the advantages of online machine learning over traditional batch learning. This analysis involved examining the water level forecasting results obtained from both methods using time series data from the HYDROSIGHT system deployed at Lac-Supérieur in Quebec.
-
Les inondations sont une préoccupation majeure avec un potentiel de risques importants pour la sécurité publique ainsi qu'un impact économique et social négatif. Pour développer un modèle hydrodynamique permettant de cartographier et d'évaluer les risques d'inondation, un modèle d'élévation est un élément essentiel. La grande disponibilité de données de télédétection multisources facilite la création d'un modèle numérique d'élévation topo-bathymétrique (TBDEM). Cependant, il peut être très difficile de créer un modèle d'élévation à haute résolution homogène adapté à la cartographie des inondations en raison des divergences entre les données topographiques et bathymétriques causées par des changements temporels, des systèmes de référence horizontaux et verticaux différents, et des différences significatives en termes de résolution, incertitude et zone de couverture. Cette étude présente une méthodologie qui élargit les études précédentes axées sur la cartographie côtière à basse résolution en résolvant les différences spatiales et temporelles des jeux de données multisources tout en maintenant l'intégrité de la morphologie des berges et de l'environnement proche du rivage. Ceci est réalisé en appliquant une nouvelle méthodologie de fusion qui est mieux adaptée aux sources de données en jeu. Une méthode de moindre coût est appliquée aux données topographiques alors qu'une méthode de feathering est appliquée aux données bathymétriques. Pour ce qui est de la zone intermédiaire à l'interface de la terre et de l'eau, des transects sont utilisés pour interpoler entre les données manquantes afin de garantir l'intégrité du littoral. Enfin, une méthode de krigeage empirique bayésien appliqué à l'ensemble des données permet de produire une surface sans discontinuité accompagnée d'une surface d'erreur pour analyser l'incertitude en chaque point du modèle. Des données LiDAR aéroporté ainsi que des données de bathymétrie multifaisceau de la section supérieure du fleuve Saint-Laurent au Québec, Canada ont été combinées en utilisant la méthodologie proposée. Le TBDEM produit dans cette étude constitue une meilleure représentation que les modèles précédents et minimise l'erreur dans les données. La capacité de ce TBDEM à être plus performant que les modèles précédents dans les simulations hydrodynamiques sera testée dans des études futures en utilisant des événements de crue enregistrés précédemment.
-
Abstract The highly fissile lithology of the rockwalls and the diversity of mass‐wasting processes provide a specific character to the active talus slopes of the northern Gaspé Peninsula since deglaciation. At a regional scale, the geology of the rockwalls, the patterns and modalities of deglaciation and the evolution towards a cold temperate morphoclimatic regime in a maritime context still influence the geomorphological dynamics of scree slopes today. At a local scale, the south–north orientation of the main coastal valleys influences insolation and exposure to prevailing winds, which in turn influence the snow cover regime and the occurrence of freeze–thaw cycles. The statistical analyses carried out from the mapping of 43 talus slopes and their geometric variables allowed the identification of significant environmental factors for the characterization of the dominant geomorphic processes: snow avalanches, frost‐coasted clast flows, debris flows and rockfalls. Slope aspect appears to be a key parameter in the nature of the processes acting on the talus slopes. East‐ and north‐facing talus slopes are generally covered by a significant snowpack in winter and the dominant processes are snow avalanches and debris flows. West‐ and south‐facing talus slopes face prevailing winds and insolation and are subject to frost‐coated clast flows, the main driver for forest regression, and rockfalls. However, the evolution of scree slopes in forested environments remains extremely complex due to the multiscale components that affect their evolution in the short, medium and long term.
-
Abstract Debris-covered glaciers are an important component of the mountain cryosphere and influence the hydrological contribution of glacierized basins to downstream rivers. This study examines the potential to make estimates of debris thickness, a critical variable to calculate the sub-debris melt, using ground-based thermal infrared radiometry (TIR) images. Over four days in August 2019, a ground-based, time-lapse TIR digital imaging radiometer recorded sequential thermal imagery of a debris-covered region of Peyto Glacier, Canadian Rockies, in conjunction with 44 manual excavations of debris thickness ranging from 10 to 110 cm, and concurrent meteorological observations. Inferring the correlation between measured debris thickness and TIR surface temperature as a base, the effectiveness of linear and exponential regression models for debris thickness estimation from surface temperature was explored. Optimal model performance ( R 2 of 0.7, RMSE of 10.3 cm) was obtained with a linear model applied to measurements taken on clear nights just before sunrise, but strong model performances were also obtained under complete cloud cover during daytime or nighttime with an exponential model. This work presents insights into the use of surface temperature and TIR observations to estimate debris thickness and gain knowledge of the state of debris-covered glacial ice and its potential hydrological contribution.
-
Abstract Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.
-
Northern hardwoods are susceptible to a wide range of defects that can reduce the amount of sound wood with desirable qualities, such as the clear sapwood of sugar maple trees. Yet, the rate at which trees decline in quality due to the development of such defects has never been quantified in northern hardwood forests due to a dearth of repeat inventories that record the appearance of defects over time. As a result, it remains uncertain whether, and how, selection management reduces the probability of decline in quality. In this study, we quantify the rate at which trees decline in quality due to the development of defects, and we test several hypotheses regarding the influence of selection management on quality. Our results show that (1) the probability of decline in quality increases as trees grow larger; (2) crown dieback also increases the probability of decline in quality; (3) the probability of decline in quality is slightly lower in managed stands than in unmanaged stands, and (4) the probability of decline in quality increases with the mean annual temperature of the site. Finally, we combined our estimates of the probability of decline in quality with previous estimates of the probability of mortality to assess the overall risk associated with retaining trees of different species, sizes, and vigour profiles. The resulting metric can inform efforts to improve the management of northern hardwood forests by providing an integrated estimate of the risk that the value of a tree will be reduced, or eliminated, due to mortality or decline in quality.
-
Performing a complete silvicultural diagnosis before a silvicultural treatment generally requires assessing the state of regeneration with the help of an inventory by sampling, particularly for stands dominated by sugar maple (Acer saccharum Marsh.) or yellow birch (Betula alleghaniensis Britt.), in which partial cuts are recommended. This inventory may then be compared to the standard or used in a growth model for saplings (trees for which the diameter measured at 1.3 m above the ground (DBH) varies from 1.1 cm to 9.0 cm). Some of these tools are based on sapling density, while others are based on the stocking of the saplings or on the stocking of total regeneration (combining saplings and seedlings with a DBH ≤ 1.0 cm). We assessed the number of plots required to estimate the density and the stocking of saplings with a given margin of error in 28 stands. The results show that more plots are required than usual in practice to inventory sapling density. The stocking is much easier to estimate precisely.
-
Abstract. Spaceborne microwave remote sensing (300 MHz–100 GHz) provides a valuable method for characterizing environmental changes, especially in Arctic–boreal regions (ABRs) where ground observations are generally spatially and temporally scarce. Although direct measurements of carbon fluxes are not feasible, spaceborne microwave radiometers and radar can monitor various important surface and near-surface variables that affect terrestrial carbon cycle processes such as respiratory carbon dioxide (CO2) fluxes; photosynthetic CO2 uptake; and processes related to net methane (CH4) exchange including CH4 production, transport and consumption. Examples of such controls include soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties and land cover. Microwave remote sensing also provides a means for independent aboveground biomass estimates that can be used to estimate aboveground carbon stocks. The microwave data record spans multiple decades going back to the 1970s with frequent (daily to weekly) global coverage independent of atmospheric conditions and solar illumination. Collectively, these advantages hold substantial untapped potential to monitor and better understand carbon cycle processes across ABRs. Given rapid climate warming across ABRs and the associated carbon cycle feedbacks to the global climate system, this review argues for the importance of rapid integration of microwave information into ABR terrestrial carbon cycle science.
-
The identification of bedforms has an important role in the study of seafloor morphology. The presence of these dynamic structures on the seafloor represents a hazard for navigation. They also influence the hydrodynamic simulation models used in the context, for example, of coastal flooding. Generally, multiBeam EchoSounders (MBES) are used to survey these bedforms. Unfortunately, the coverage of the MBES is limited to small areas per survey. Therefore, the analysis of large areas of interest (like navigation channels) requires the integration of different datasets acquired over overlapping areas at different times. The presence of spatial and temporal inconsistencies between these datasets may significantly affect the study of bedforms, which are subject to many natural processes (e.g. tides; flow). This paper proposes a novel approach to integrate multisource bathymetric datasets to study bedforms. The proposed approach is based on consolidating multisource datasets and applying the Empirical Bayesian Kriging interpolation for the creation of a multisource Digital Bathymetric Model (DBM). It has been designed to be adapted for estuarine areas with a high dynamism of the seafloor, characteristic of the fluvio-marine regime of the Estuary of the Saint-Lawrence River. This area is distinguished by a high tidal cycle and the presence of fields of dunes. The study involves MBES data that was acquired daily over a field of dunes in this area over the span of four days for the purpose of monitoring the morphology and migration of dunes. The proposed approach performs well with a resulting surface with a reduced error relative to the original data compared to existing approaches and the conservation of the dune shape through the integration of the data sets despite the highly dynamic fluvio-marine environments.
-
A three-dimensional large eddy simulation model is used to simulate the turbulent flow dynamics around a circular pier in live-bed and clear-water scour conditions. The Navier–Stokes equations are transformed into a σ-coordinate system and solved using a second-order unstructured triangular finite-volume method. We simulate the bed evolution by solving the Exner-Polya equation assisted by a sand-slide model as a correction method. The bedload transport rate is based on the model of Engelund and Fredsœ. The model was validated for live-bed conditions in a wide channel and clear-water conditions in a narrow channel against the experimental data found in the literature. The in-house model NSMP3D can successfully produce both the live-bed and clear-water scouring throughout a stable long-term simulation. The flow model was used to study the effects of the blockage ratio in the flow near the pier in clear-water conditions, particularly the contraction effect at the zone where the scour hole starts to form. The scour depth in the clear water simulations is generally deeper than the live-bed simulations. In clear-water, the results show that the present model is able to qualitatively and quantitatively capture the hydrodynamic and morphodynamic processes near the bed. In comparison to the wide channel situation, the simulations indicate that the scour rate is faster in the narrow channel case.