Votre recherche
Résultats 36 ressources
-
Abstract Fluvial biogeomorphology has proven to be efficient in understanding the evolution of rivers in terms of vegetation succession and channel adjustment. The role of floods as the primary disturbance regime factor has been widely studied, and our knowledge of their effects on vegetation and channel adjustment has grown significantly in the last two decades. However, cold rivers experiencing ice dynamics (e.g., ice jams and mechanical breakups) as an additional disturbance regime have not yet been studied within a biogeomorphological scope. This study investigated the long‐term effects of ice dynamics on channel adjustments and vegetation trajectories in two rivers with different geomorphological behaviours, one laterally confined (Matapédia River) and one mobile (Petite‐Cascapédia River), in Quebec, Canada. Using dendrochronological analysis, historical data and aerial photographs from 1963 to 2016, this study reconstructed ice jam chronologies, characterized flood regimes and analysed vegetation and channel changes through a photointerpretation approach. The main findings of this study indicate that geomorphological impacts of mechanical ice breakups are not significant at the decadal and reach scales and that they might not be the primary factors of long‐term geomorphological control. However, results have shown that vegetation was more sensitive to ice dynamics. Reaches presenting frequent ice jams depicted high regression rates and turnovers even during years with very low floods, suggesting that ice dynamics significantly increase shear stress on plant patches. This study also highlights the high resiliency of both rivers to ice jam disturbances, with vegetation communities and channel forms recovering within a decade. With the uncertainties following the reach/corridor and decadal scales, future research should focus on long‐term monitoring and refined spatial scales to better understand the mechanisms behind the complex interactions among ice dynamics, vegetation and hydrogeomorphological processes in cold rivers.
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Abstract Climate change is predicted to increase the frequency and intensity of floods in the province of Quebec, Canada. Therefore, in 2015, to better monitor the level of adaptation to flooding of Quebec residents living in or near a flood-prone area, the Quebec Observatory of Adaptation to Climate Change developed five indices of adaptation to flooding, according to the chronology of events. The present study was conducted 4 years later and is a follow-up to the 2015 one. Two independent samples of 1951 (2015) and 974 (2019) individuals completed a questionnaire on their adoption (or non-adoption) of flood adaptation behaviors, their perception of the mental and physical impacts of flooding, and their knowledge of the fact that they lived in a flood-prone area. The results of the study demonstrated the measurement invariance of the five indices across two different samples of people over time, ensuring that the differences (or absence of differences) observed in flood-related adaptive behaviors between 2015 and 2019 were real and not due to measurement errors. They also showed that, overall, Quebeckers’ flood-related adaptive behaviors have not changed considerably since 2015, with adaptation scores being similar in 2019 for four of the five flood indices. Moreover, the results indicated an increase in self-reported physical and mental health issues related to past flooding events, as well as a larger proportion of people having consulted a health professional because of these problems. Thus, this study provides a better understanding of flood adaptation in Quebec over the past 4 years and confirms that the five adaptive behavior indices developed in 2015 are appropriate tools for monitoring changes in flood adaptation in the province. Finally, our results showed that little has changed in Quebeckers’ adoption of adaptive behaviors, highlighting the need for awareness raising in order to limit the impacts that climate change will have on the population.
-
There is currently much discussion as to whether probabilistic (top–down) or possibilistic (bottom–up) approaches are the most appropriate to estimate potential future climate impacts. In a context of deep uncertainty, such as future climate, bottom-up approaches aimed at assessing the sensitivity and vulnerability of systems to changes in climate variables have been gaining ground. A refined framework is proposed here (in terms of coherence, structure, uncertainty, and results analysis) that adopts the scenario–neutral method of the bottom–up approach, but also draws on some elements of the top–down approach. What better guides the task of assessing the potential hydroclimatological impacts of changing climatic conditions in terms of the sensitivity of the systems, differential analysis of climatic stressors, paths of change, and categorized response of the scenarios: past, changing, compensatory, and critical condition. The results revealed a regional behavior (of hydroclimatology, annual water balances, and snow) and a differential behavior (of low flows). We find, among others, the plausible scenario in which increases in temperature and precipitation would generate the same current mean annual flows, with a reduction of half of the snow, a decrease in low flows (significant, but differentiated between basins), and a generalized increase in dry events.
-
Abstract Although hydraulic infrastructure such as levees remain important for flood risk management in the USA, France, and Quebec (Canada), there is increasing emphasis on nonstructural measures, such as regulatory flood maps, to reduce exposure and vulnerability, for example, preventing people from building in high hazard areas. One key concept related to areas protected by levees is that of “residual risk”, that is, the risk from floods greater than the design standard of the levees (levee overtopping) and from levee breach. In this article, we review the legislative framework for regulatory flood maps in the USA, France, and Quebec (Canada) and compare how residual risk behind protective structures is taken into account (or not) in regulatory flood maps. We find big differences in how the USA, France and Canada manage residual risk behind the levees. While in France the area behind levees is part of the regulatory flood prone area, and land use restrictions, building codes, emergency measures and risk communication are mandatory, in the USA the area behind levees is only shown as part of the regulatory flood prone area if the levee is not accredited. In Quebec, regulatory flood maps in general follow the French approach with a few exceptions.
-
Floods have potentially devastating consequences on populations, industries and environmental systems. They often result from a combination of effects from meteorological, physiographic and anthropogenic natures. The analysis of flood hazards under a multivariate perspective is primordial to evaluate several of the combined factors. This study analyzes spring flood-causing mechanisms in terms of the occurrence, frequency, duration and intensity of precipitation as well as temperature events and their combinations previous to and during floods using frequency analysis as well as a proposed multivariate copula approach along with hydrometeorological indices. This research was initiated over the Richelieu River watershed (Quebec, Canada), with a particular emphasis on the 2011 spring flood, constituting one of the most damaging events over the last century for this region. Although some work has already been conducted to determine certain causes of this record flood, the use of multivariate statistical analysis of hydrologic and meteorological events has not yet been explored. This study proposes a multivariate flood risk model based on fully nested Archimedean Frank and Clayton copulas in a hydrometeorological context. Several combinations of the 2011 Richelieu River flood-causing meteorological factors are determined by estimating joint and conditional return periods with the application of the proposed model in a trivariate case. The effects of the frequency of daily frost/thaw episodes in winter, the cumulative total precipitation fallen between the months of November and March and the 90th percentile of rainfall in spring on peak flow and flood duration are quantified, as these combined factors represent relevant drivers of this 2011 Richelieu River record flood. Multiple plausible and physically founded flood-causing scenarios are also analyzed to quantify various risks of inundation.
-
Peatlands are relatively common in the province of Quebec (Canada) where they occupy about 12% of the surface. The hydrology of peatlands remains insufficiently documented, more specifically during the spring period where data are currently lacking in many regions, including in the Quebec boreal territory. The paucity of spring data are due to snowmelt that causes flooding in peatlands and along rivers, which makes hydrometry complicated during this period of the year. In this paper, the Peatland Hydrological Impact Model (PHIM) was coupled with a snowmelt module (CemaNeige) to simulate spring flows in an ombrotrophic peatland located in the Romaine River watershed (Quebec). Discharge data from two summer seasons (2019 and 2020) were used to calibrate the hydrological model. Despite the relatively short time series, the results show a good performance. The simulated spring flows resulting from the PHIM + CemaNeige combination are of the right order of magnitude.
-
Over the past decades, a variety of ice control structures (ICSs) have been designed and built, but to date, there has been no systematic evaluation of the effectiveness of these structures. To achieve this objective, first an understanding of the interaction between different ice processes and the ICSs must be established. For this purpose, a total of four ICSs located in the province of Québec were monitored during the 2021–2022 winter. The results showed that the ice jam holding time could vary from 1.5 to 68.5 h. The release of the jam was mechanically driven when the ratio of release to initiation Froude number was higher than one and was thermally driven when this ratio was lower than one, and the water temperature increased between initiation and release. Also, as the ratio of the total pier spacing to upstream river width increased, the holding time decreased.
-
ABSTRACT Wastewater-based epidemiology has emerged as a promising tool to monitor pathogens in a population, particularly when clinical diagnostic capacities become overwhelmed. During the ongoing COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), several jurisdictions have tracked viral concentrations in wastewater to inform public health authorities. While some studies have also sequenced SARS-CoV-2 genomes from wastewater, there have been relatively few direct comparisons between viral genetic diversity in wastewater and matched clinical samples from the same region and time period. Here we report sequencing and inference of SARS-CoV-2 mutations and variant lineages (including variants of concern) in 936 wastewater samples and thousands of matched clinical sequences collected between March 2020 and July 2021 in the cities of Montreal, Quebec City, and Laval, representing almost half the population of the Canadian province of Quebec. We benchmarked our sequencing and variant-calling methods on known viral genome sequences to establish thresholds for inferring variants in wastewater with confidence. We found that variant frequency estimates in wastewater and clinical samples are correlated over time in each city, with similar dates of first detection. Across all variant lineages, wastewater detection is more concordant with targeted outbreak sequencing than with semi-random clinical swab sampling. Most variants were first observed in clinical and outbreak data due to higher sequencing rate. However, wastewater sequencing is highly efficient, detecting more variants for a given sampling effort. This shows the potential for wastewater sequencing to provide useful public health data, especially at places or times when sufficient clinical sampling is infrequent or infeasible.
-
Abstract The consensus around the need for a shift in river management approaches to include more natural processes is steadily growing amongst scientists, practitioners, and governmental agencies. The freedom space for rivers concept promotes the delineation of a single space that integrates multiple fluvial dynamics such as floods, lateral migration, channel avulsions, and riparian wetlands connectivity. The objective of this research is to assess the validity of the hydrogeomorphological approach to delineate the freedom space for an extensive sampling of river reaches, covering 167 km, in contrasting watersheds in Quebec (Canada). Comparative analysis was conducted on the relative importance of erosion and flood processes on the freedom space delineation for various fluvial types. Semiautomated tools based on light detection and ranging (LiDAR) digital elevation models were also tested on an additional 274 km of watercourses to facilitate freedom space mapping over extensive zones and for highly dynamics environments such as alluvial fans. In the studied reaches, flood and erosion processes occur respectively, on average, in a space equivalent to 2.6 and 20.6 channel widths. In unconfined landscapes, flood processes represent an area up to almost four times the area of erosion processes expected in a 50‐year period. In partly confined and confined environments, erosion processes are more likely to exceed flooding zone, and therefore need to be integrated in the mapping. This study helps better determine the conditions for which the full methodology of freedom space mapping is required or where semiautomated methods can be used. It provides useful guidelines for the implementation of the freedom space approach.
-
Given that flooding episodes are occurring at a greater rate due to climate change, individuals must adopt certain adaptation behaviors to prevent or mitigate the anticipated or negative impact of such events. However, few studies have assessed if and how households and individuals have actually taken action in this regard. Because some individual beliefs can be linked to facilitating factors and barriers to action, a better understanding of the adoption of adaptive behaviors requires a combined analysis of individual psychosocial factors. The purpose of this study was to develop a better understanding of the reasons underlying the adoption of behaviors related to structural adaptation to flooding by people living in or near flood-prone areas in the Province of Québec (Canada). Results of a series of structural equation modeling showed that behavioral, normative and control beliefs were all significant predictors of the respondents' intention to adopt structural flood protective behaviors, with normative beliefs being the strongest. By identifying the best psychosocial predictors of the adoption of such behaviors, the results of this study provide valuable insights regarding the most effective factors to be used in public health messages to promote the adoption of behaviors related to structural adaptation to flooding.
-
The objective of this study is to analyze the temporal variability in water levels of Lake Mégantic (27.4 km2) during the period 1920–2020 in relation to anthropogenic and natural factors on the one hand, and its impact on the intensity and frequency of heavy flooding (recurring floods ≥ 10 years) of the Chaudière River of which it is the source, on the other hand. The application of four different Mann–Kendall tests showed a significant decrease in lake water levels during this period. The Lombard test revealed two breaks in the average daily maximum and average water levels, but only one break in the average daily minimum water levels. The first shift, which was smoothed, occurred between 1957 and 1963. It was caused by the demolition in 1956 of the first dam built in 1893 and the significant storage of water in the dams built upstream of the lake between 1956 and 1975. The second shift, which was rather abrupt, occurred between 1990 and 1993. It was caused by the voluntary and controlled lowering of the lake’s water levels in 1993 to increase the surface area of the beaches for recreational purposes. However, despite this influence of anthropogenic factors on this drop in water levels, they are negatively correlated with the global warming climate index. It is therefore a covariation, due to anthropogenic factors whose impacts are exerted at different spatial scales, without a physical causal link. However, the winter daily minimum water levels, whose temporal variability has not been influenced by anthropogenic activities, are positively correlated with the NAO and AO indices, but negatively with PDO. Finally, since the transformation of Lake Mégantic into a reservoir following the construction of the Mégantic dam in 1893 and 1973 to control heavy flooding in the Chaudière River, all recurrent floods ≥ 10 years have completely disappeared in the section of this river located downstream of Lake Mégantic. However, the disappearance of these floods and the drop in water levels of Lake Mégantic have not significantly impacted the stationarity in the flow series of the Chaudière River since 1920.
-
Abstract The Chaudière River in Quebec, Canada, is well known for its frequent ice jam flooding events. As part of a larger watershed research program, an extensive field campaign has been carried out during the 2018–2019 and 2019–2020 winter seasons to quantify the spatiotemporal characteristics of the break-up processes along the Chaudière River. The results showed that mid-winter ice jams have formed in the Intermediate Chaudière and persisted until spring break-up. Spring break-ups were initiated in the Upper Chaudière, and then, almost simultaneously, in the Intermediate and Lower Chaudière reaches. The break-up in the Intermediate Chaudière usually lasts longer than the rest of the river since the slope is much milder, and the occurrence of mid-winter ice jams has been seen to delay the ice clearing. A reach-by-reach characterization of the cumulative degree day of thawing and discharge thresholds for the onset of break-up has been identified. During the field campaign, 51 ice jams were documented together with their location, length, date of formation, and the morphological feature triggering jam formation. Break-up patterns, hydrometeorological thresholds of ice mobilization, and ice jam sites identified in this study can serve as a basis for the implementation of an early warning system.
-
Introduction:In July 2013, a train transporting oil derailed and exploded in Lac-Mégantic, causing major human, environmental, and economic impacts. A community-based survey of people aged 10-25, conducted in 2017, revealed that many young people suffer in silence and report feeling isolated. These observations led to the conclusion that we must make room for young people, and that opportunities for engagement and participation must be provided within the community.Aim:The Public Health Direction of Estrie aimed to identify strategies to promote health and wellbeing for young people living in and around Lac-Mégantic.Methods:A collective reflection half-day was hosted with sixty key stakeholders (school board, other education institutions, health and social services, community sector, municipal/political sector, parents, youth). Throughout the event, participants were invited to build on and learn from accomplishments and experiential knowledge, and develop a common vision of the solutions to be pursued or implemented. All qualitative data sources (verbal and written data from large- and sub-group activities) were analyzed through a content analysis.Results:Several themes (i.e. potential solutions) emerged from the analysis: common venue, diversified activities, communication, collaboration, involvement, support for at-risk youth, intergenerational component, etc. Participants agreed on four priorities for action: 1) creating a gathering place, 2) establishing a Youth Committee, 3) supporting adults working with youth, and 4) fostering a better flow of information.Discussion:Several positive outcomes of the collective reflection half-day were observed, including the mobilization of the participants who greatly appreciated the event, and many promising ideas launched by stakeholders. A social worker is now fully dedicated to supporting youth wellbeing and engagement in Lac-Mégantic. A Youth Committee has been established and projects by and for youth are being implemented. Bottom-up approaches to identify solutions to complex situations are not only effective but also respectful of the local culture.