UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Risk assessment of drinking water intake contamination from agricultural activities using a Bayesian network
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Risk assessment of drinking water intake contamination from agricultural activities using a Bayesian network

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Kammoun, Raja (Auteur)
  • McQuaid, Natasha (Auteur)
  • Lessard, Vincent (Auteur)
  • Goitom, Eyerusalem Adhanom (Auteur)
  • Prévost, Michèle (Auteur)
  • Bichai, Françoise (Auteur)
  • Dorner, Sarah (Auteur)
  • Pradhanang, Soni M. (Éditeur)
Titre
Risk assessment of drinking water intake contamination from agricultural activities using a Bayesian network
Résumé
Agricultural activities can result in the contamination of surface runoff with pathogens, pesticides, and nutrients. These pollutants can enter surface water bodies in two ways: by direct discharge into surface waters or by infiltration and recharge into groundwater, followed by release to surface waters. Lack of financial resources makes risk assessment through analysis of drinking water pollutants challenging for drinking water suppliers. Inability to identify agricultural lands with a high-risk level and implement action measures might lead to public health issues. As a result, it is essential to identify hazards and conduct risk assessments even with limited data. This study proposes a risk assessment model for agricultural activities based on available data and integrating various types of knowledge, including expert and literature knowledge, to estimate the levels of hazard and risk that different agricultural activities could pose to the quality of withdrawal waters. To accomplish this, we built a Bayesian network with continuous and discrete inputs capturing raw water quality and land use upstream of drinking water intakes (DWIs). This probabilistic model integrates the DWI vulnerability, threat exposure, and threats from agricultural activities, including animal and crop production inventoried in drainage basins. The probabilistic dependencies between model nodes are established through a novel adaptation of a mixed aggregation method. The mixed aggregation method, a traditional approach used in ecological assessments following a deterministic framework, involves using fixed assumptions and parameters to estimate ecological outcomes in a specific case without considering inherent randomness and uncertainty within the system. After validation, this probabilistic model was used for four water intakes in a heavily urbanized watershed with agricultural activities in the south of Quebec, Canada. The findings imply that this methodology can assist stakeholders direct their efforts and investments on at-risk locations by identifying agricultural areas that can potentially pose a risk to DWIs.
Publication
PLOS Water
Volume
2
Numéro
7
Date
2023-7-27
Abrév. de revue
PLOS Water
Langue
en
DOI
10.1371/journal.pwat.0000073
ISSN
2767-3219
URL
https://dx.plos.org/10.1371/journal.pwat.0000073
Consulté le
2024-09-02 13 h 56
Catalogue de bibl.
DOI.org (Crossref)
Référence
Kammoun, R., McQuaid, N., Lessard, V., Goitom, E. A., Prévost, M., Bichai, F., & Dorner, S. (2023). Risk assessment of drinking water intake contamination from agricultural activities using a Bayesian network. PLOS Water, 2(7). https://doi.org/10.1371/journal.pwat.0000073
Membres du RIISQ
  • Dorner, Sarah
Secteurs et disciplines
  • Société et Culture
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/9GXURIQG

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web