UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Dharmadasa, Vasana (Auteur)
  • Kinnard, Christophe (Auteur)
  • Baraër, Michel (Auteur)
Titre
An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar
Résumé
This study assesses the performance of UAV lidar system in measuring high-resolution snow depths in agro-forested landscapes in southern Québec, Canada. We used manmade, mobile ground control points in summer and winter surveys to assess the absolute vertical accuracy of the point cloud. Relative accuracy was determined by a repeat flight over one survey block. Estimated absolute and relative errors were within the expected accuracy of the lidar (~5 and ~7 cm, respectively). The validation of lidar-derived snow depths with ground-based measurements showed a good agreement, however with higher uncertainties observed in forested areas compared with open areas. A strip alignment procedure was used to attempt the correction of misalignment between overlapping flight strips. However, the significant improvement of inter-strip relative accuracy brought by this technique was at the cost of the absolute accuracy of the entire point cloud. This phenomenon was further confirmed by the degraded performance of the strip-aligned snow depths compared with ground-based measurements. This study shows that boresight calibrated point clouds without strip alignment are deemed to be adequate to provide centimeter-level accurate snow depth maps with UAV lidar. Moreover, this study provides some of the earliest snow depth mapping results in agro-forested landscapes based on UAV lidar.
Publication
Remote Sensing
Date
2022-03-30
DOI
10.3390/rs14071649
Extra
DOI: 10.3390/rs14071649 MAG ID: 4221028823
Référence
Dharmadasa, V., Kinnard, C., & Baraër, M. (2022). An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar. Remote Sensing. https://doi.org/10.3390/rs14071649
Membres du RIISQ
  • Baraer, Michael
  • Étudiant.es
  • Kinnard, Christophe
Secteurs et disciplines
  • Nature et Technologie
Types d'événements extrêmes
  • Évènements liés au froid (neige, glace)
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/8DTC5IVD

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web