UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Li, Jingru (Auteur)
  • Pan, Guiying (Auteur)
  • Chen, Yangyu (Auteur)
  • Wang, Xiaoling (Auteur)
  • Huang, Peizhi (Auteur)
  • Zhang, Li (Auteur)
  • Zhou, Haijun (Auteur)
Titre
Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model
Résumé
Rapid urban flood mapping is crucial for timely risk alerts and emergency relief. Machine learning (ML)-based mapping models emerge as a promising approach for fast, accurate inundation forecasts. However, current ML models often use precipitation features as inputs and predict maximum flood depth for all grid cells of a specific region simultaneously. This special design improves their prediction efficiency but limits their application in new regions. This study aims to create a highly adaptable, rapid urban maximum flood water depth mapping model based on the random forest regression algorithm and the extreme gradient boosting algorithm. Our mapping model additionally incorporates terrain and land-use features, besides the precipitation feature, as input variables and generates the maximum water depth only for a grid cell in each mapping. Thus, it can be unchangeably applied to the grid cells in a new area when the model is fully trained. In the case study of Shenzhen, China, our ML-based mapping model demonstrated excellent mapping ability in both training and validation sets. The coefficient of determination (R2) is consistently greater than or close to 95%. Furthermore, it revealed good generalization ability when directly applied to a new rainfall event (R2 = 0.875) and a new area (R2 = 0.810). Meanwhile, the time cost of the mapping model is less than 3 s, meeting the requirement for real-time mapping. These results indicate that this highly adaptable model, once appropriately trained, can be applied to rapid urban flood severity mapping, which significantly reduces its use cost in urban flood management. © 2025 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
Publication
Journal of Flood Risk Management
Volume
18
Numéro
3
Date
2025
Abrév. de revue
J. Flood Risk Manage.
Langue
English
DOI
10.1111/jfr3.70095
ISSN
1753-318X
Catalogue de bibl.
Scopus
Extra
Publisher: John Wiley and Sons Inc
Référence
Li, J., Pan, G., Chen, Y., Wang, X., Huang, P., Zhang, L., & Zhou, H. (2025). Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model. Journal of Flood Risk Management, 18(3). https://doi.org/10.1111/jfr3.70095
Axes du RIISQ
  • 1 - aléas, vulnérabilités et exposition
  • 2 - enjeux de gestion et de gouvernance
  • 3 - aspects biopsychosociaux
Enjeux majeurs
  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation
Types d'événements extrêmes
  • Inondations et crues
Lien vers cette notice
https://bibliographies.uqam.ca/riisq/bibliographie/2KU2E28W

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web