A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models
Type de ressource
Auteurs/contributeurs
- Bégin, Jean-François (Auteur)
- Boudreault, Mathieu (Auteur)
Titre
A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models
Résumé
Abstract
We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.
Publication
Studies in Nonlinear Dynamics & Econometrics
Date
2024-03-29
Langue
en
ISSN
1081-1826, 1558-3708
Consulté le
23/10/2024 14:42
Catalogue de bibl.
DOI.org (Crossref)
Référence
Bégin, J.-F., & Boudreault, M. (2024). A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models. Studies in Nonlinear Dynamics & Econometrics. https://doi.org/10.1515/snde-2023-0028
Auteur·e·s
Lien vers cette notice