Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada
  • Accueil
Bibliographie complète

A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Bourget, Mathilde (Auteur)
  • Boudreault, Mathieu (Auteur)
  • Carozza, David A. (Auteur)
  • Boudreault, Jérémie (Auteur)
  • Raymond, Sébastien (Auteur)
Titre
A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada
Résumé
Abstract There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.
Publication
ASTIN Bulletin
Volume
54
Numéro
3
Pages
495-517
Date
09/2024
Abrév. de revue
ASTIN Bull.
Langue
en
DOI
10.1017/asb.2024.19
ISSN
0515-0361, 1783-1350
URL
https://www.cambridge.org/core/product/identifier/S0515036124000199/type/journal_article
Consulté le
23/10/2024 14:41
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
http://creativecommons.org/licenses/by-nc-nd/4.0/
Référence
Bourget, M., Boudreault, M., Carozza, D. A., Boudreault, J., & Raymond, S. (2024). A data science approach to climate change risk assessment applied to pluvial flood occurrences for the United States and Canada. ASTIN Bulletin, 54(3), 495–517. https://doi.org/10.1017/asb.2024.19
Auteur·e·s
  • Boudreault, Mathieu
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/RB8VBMIT

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web