Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Application of machine learning methods for paleoclimatic reconstructions from leaf traits
  • Accueil
Bibliographie complète

Application of machine learning methods for paleoclimatic reconstructions from leaf traits

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Wei, Gang (Auteur)
  • Peng, Changhui (Auteur)
  • Zhu, Qiuan (Auteur)
  • Zhou, Xiaolu (Auteur)
  • Yang, Bin (Auteur)
Titre
Application of machine learning methods for paleoclimatic reconstructions from leaf traits
Résumé
Abstract Digital leaf physiognomy (DLP) is considered as one of the most promising methods for estimating past climate. However, current models built using the DLP data set still lack precision, especially for mean annual precipitation (MAP). To improve predictive power, we developed five machine learning (ML) models for mean annual temperature (MAT) and MAP respectively, and then tested the precision of these models and some of their averaging compared with that obtained from other models. The precision of all models was assessed using a repeated stratified 10‐fold cross‐validation. For MAT, three combinations of models ( R 2 = .77) presented moderate improvements in precision over the multiple linear regression (MLR) model ( R 2 = .68). For log e (MAP), the averaging of the support vector machine (SVM) and boosting models improved the R 2 from .19 to .63 compared with that of the MLR model. For MAP, the R 2 of this model combination was 0.49, which was much better than that of the artificial neural network (ANN) model ( R 2 = .21). Even the bagging model, which had the lowest R 2 (.37) for log e (MAP), demonstrated better precision ( R 2 = .27) for MAP. Our palaeoclimate estimates for nine fossil floras were also more accurate, because they were in better agreement with independent paleoclimate evidence. Our study confirms that our ML models and their averaging can improve paleoclimatic reconstructions, providing a better understanding of the relationship between climate and leaf physiognomy.
Publication
International Journal of Climatology
Volume
41
Numéro
S1
Date
01/2021
Abrév. de revue
Intl Journal of Climatology
Langue
en
DOI
10.1002/joc.6921
ISSN
0899-8418, 1097-0088
URL
https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.6921
Consulté le
13/08/2024 13:52
Catalogue de bibl.
DOI.org (Crossref)
Référence
Wei, G., Peng, C., Zhu, Q., Zhou, X., & Yang, B. (2021). Application of machine learning methods for paleoclimatic reconstructions from leaf traits. International Journal of Climatology, 41(S1). https://doi.org/10.1002/joc.6921
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/IM3R5VQ4

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web