Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposition Method
  • Accueil

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 264
  • 265
  • 266
  • 267
  • 268
  • ...
  • 888
  • Page 266 de 888

Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposition Method

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Di Luca, A. (Auteur)
  • Argüeso, D. (Auteur)
  • Sherwood, S. (Auteur)
  • Evans, J. P. (Auteur)
Titre
Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposition Method
Résumé
Abstract A fundamental issue when evaluating the simulation of precipitation is the difficulty of quantifying specific sources of errors and recognizing compensation of errors. We assess how well a large ensemble of high‐resolution simulations represents the precipitation associated with strong cyclones. We propose a framework to breakdown precipitation errors according to different dynamical (vertical velocity) and thermodynamical (vertically integrated water vapor) regimes and the frequency and intensity of precipitation. This approach approximates the error in the total precipitation of each regime as the sum of three terms describing errors in the large‐scale environmental conditions, the frequency of precipitation and its intensity. We show that simulations produce precipitation too often, that its intensity is too weak, that errors are larger for weak than for strong dynamical forcing and that biases in the vertically integrated water vapor can be large. Using the error breakdown presented above, we define four new error metrics differing on the degree to which they include the compensation of errors. We show that convection‐permitting simulations consistently improve the simulation of precipitation compared to coarser‐resolution simulations using parameterized convection, and that these improvements are revealed by our new approach but not by traditional metrics which can be affected by compensating errors. These results suggest that convection‐permitting models are more likely to produce better results for the right reasons. We conclude that the novel decomposition and error metrics presented in this study give a useful framework that provides physical insights about the sources of errors and a reliable quantification of errors. , Plain Language Summary The simulations of complex physical processes always entail various sources of errors. These errors can be of different sign and can consequently cancel each other out when using traditional performance metrics such as the bias error metric. We present a formal framework that allows us to approximate precipitation according to three terms that describe different aspects of the rainfall field including large‐scale environmental conditions and the frequency and intensity of rainfall. We apply the methodology to a large ensemble of high‐resolution simulations representing the precipitation associated with strong cyclones in eastern Australia. We show that simulations produce precipitation too often, with an intensity that is too weak leading to strong compensation. We further define new error metrics that explicitly quantify the degree of error compensation when simulating precipitation. We show that convection‐permitting simulations consistently improve the performance compared to coarser resolution simulations using parameterized convection and that these improvements are only revealed when using the new error metrics but are not apparent in traditional metrics (e.g., bias). , Key Points Multiple high‐resolution simulations produce precipitation too often with underestimated intensity leading to strong error compensation Errors in precipitation are quantified using novel metrics that prevent error compensation showing value compared with traditional metrics Convection permitting simulations outperform the representation of precipitation compared to simulations using parameterized convection
Publication
Journal of Advances in Modeling Earth Systems
Volume
13
Numéro
7
Pages
e2020MS002447
Date
07/2021
Abrév. de revue
J Adv Model Earth Syst
Langue
en
DOI
10.1029/2020MS002447
ISSN
1942-2466, 1942-2466
URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020MS002447
Consulté le
01/11/2024 14:19
Catalogue de bibl.
DOI.org (Crossref)
Référence
Di Luca, A., Argüeso, D., Sherwood, S., & Evans, J. P. (2021). Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposition Method. Journal of Advances in Modeling Earth Systems, 13(7), e2020MS002447. https://doi.org/10.1029/2020MS002447
Auteur·e·s
  • Di Luca, Alejandro
Document
  • Di Luca et al. - 2021 - Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposit.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/RA5FTL8K
  • 1
  • ...
  • 264
  • 265
  • 266
  • 267
  • 268
  • ...
  • 888
  • Page 266 de 888

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web