Rechercher
Bibliographie complète 859 ressources
-
Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5.
-
Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5.
-
Abstract. Canada's RADARSAT missions improve the potential to study past flood events; however, existing tools to derive flood depths from this remote-sensing data do not correct for errors, leading to poor estimates. To provide more accurate gridded depth estimates of historical flooding, a new tool is proposed that integrates Height Above Nearest Drainage and Cost Allocation algorithms. This tool is tested against two trusted, hydraulically derived, gridded depths of recent floods in Canada. This validation shows the proposed tool outperforms existing tools and can provide more accurate estimates from minimal data without the need for complex physics-based models or expert judgement. With improvements in remote-sensing data, the tool proposed here can provide flood researchers and emergency managers accurate depths in near-real time.
-
Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Polar clouds are, as a consequence of the paucity of in situ observations, poorly understood compared to their lower latitude analogs, yet highly climate-sensitive through thermal radiation emission. The prevalence of Thin Ice Clouds (TIC) dominates in cold Polar Regions and the Upper Troposphere Lower Stratosphere (UTLS) altitudes. They can be grouped into 2 broad categories. The first thin ice cloud type (TIC1) is made up of high concentrations of small, non-precipitating ice crystals. The second type (TIC2) is composed of relatively small concentrations of larger, precipitating ice crystals. In this study, we investigate the ability of a developmental version of the Canadian Regional Climate Model (CRCM6) in simulating cold polar-night clouds over the Arctic Ocean, a remote region that is critical to atmospheric circulation reaching out to the mid-latitudes. The results show that, relative to CloudSat-CALIPSO vertical profile products, CRCM6 simulates high-latitude and low spatial frequency variations of Ice Water Content (IWC), effective radius (re) and cooling rates reasonably well with only small to moderate wet and dry biases. The model can also simulate cloud type, location, and temporal occurrence effectively. As well, it successfully simulated higher altitude TIC1 clouds whose small size evaded CloudSat detection while being visible to CALIPSO.
-
Tropical rainforest ecosystems are important when considering the global methane (CH4) budget and in climate change mitigation. However, there is a lack of direct and year-round observations of ecosystem-scale CH4 fluxes from tropical rainforest ecosystems. In this study, we examined the temporal variations in CH4 flux at the ecosystem scale and its annual budget and environmental controlling factors in a tropical rainforest of Hainan Island, China, using 3 years of continuous eddy covariance measurements from 2016 to 2018. Our results show that CH4 uptake generally occurred in this tropical rainforest, where strong CH4 uptake occurred in the daytime, and a weak CH4 uptake occurred at night with a mean daily CH4 flux of −4.5 nmol m−2 s−1. In this rainforest, the mean annual budget of CH4 for the 3 years was −1260 mg CH4 m−2 year−1. Furthermore, the daily averaged CH4 flux was not distinctly different between the dry season and wet season. Sixty-nine percent of the total variance in the daily CH4 flux could be explained by the artificial neural network (ANN) model, with a combination of air temperature (Tair), latent heat flux (LE), soil volumetric water content (VWC), atmospheric pressure (Pa), and soil temperature at −10 cm (Tsoil), although the linear correlation between the daily CH4 flux and any of these individual variables was relatively low. This indicates that CH4 uptake in tropical rainforests is controlled by multiple environmental factors and that their relationships are nonlinear. Our findings also suggest that tropical rainforests in China acted as a CH4 sink during 2016–2018, helping to counteract global warming.
-
Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m 2 /yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.
-
Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.
-
The NAEC catalogue comprises information on extratropical cyclone (ETC) tracks in North America (20–80 N and 180-0W) from January 1979 to December 2020. The source data used to produce this dataset is obtained from the ECMWF ERA5 reanalysis at 1-hour spatial resolution and 0.25x0.25 degree spatial resolution. In addition to the location, time, and intensity, this dataset also includes ETC-associated impact variables such as the near-surface wind speed, wind gust, and precipitation, averaged using different radii around the ETC center. Both absolute and relative (to the local climatology) measures are provided. This catalogue provides useful information for the assessment of ETC-induced impacts over North America.
-
Abstract Declining sea ice is expected to change the Arctic's physical and biological systems in ways that are difficult to predict. This study used stable isotope compositions (δ 13 C and δ 15 N) of archaeological, historic, and modern Pacific walrus ( Odobenus rosmarus divergens ) bone collagen to investigate the impacts of changing sea ice conditions on walrus diet during the last ~4000 yr. An index of past sea ice conditions was generated using dinocyst-based reconstructions from three locations in the northeastern Chukchi Sea. Archaeological walrus samples were assigned to intervals of high and low sea ice, and δ 13 C and δ 15 N were compared across ice states. Mean δ 13 C and δ 15 N values were similar for archaeological walruses from intervals of high and low sea ice; however, variability among walruses was greater during low-ice intervals, possibly indicating decreased availability of preferred prey. Overall, sea ice conditions were not a primary driver of changes in walrus diet. The diet of modern walruses was not consistent with archaeological low sea ice intervals. Rather, the low average trophic position of modern walruses (primarily driven by males), with little variability among individuals, suggests that trophic changes to this Arctic ecosystem are still underway or are unprecedented in the last ~4000 yr.
-
The NA-ISD2ERA is a station-based gridded dataset of hourly 10-m wind speed, surface total precipitation, sea-level pressure, and 2-m air and dew point temperature observations interpolated on the regular 0.25° latitude-longitude ERA5 grid over North America for the 1990-2021 period. Station observations are from the Integrated Surface Database (ISD) developed by the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) (Smith et al. 2011). It includes over 35,000 weather stations around the world of hourly to sub-hourly in situ observations for numerous variables such as wind speed, precipitation, sea-level pressure, air and dew point temperature. The NCEI ISD dataset is available at https://www.ncei.noaa.gov. ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Hersbach et al., 2020). Quality checks implemented in ISD are used to select reliable observations. For each ERA5 grid cell and at each hour, the data are interpolated by taking the nearest available ISD observation to the grid cell center that is located within the targeted grid cell.