Rechercher
Bibliographie complète 313 ressources
-
Abstract Adjustments for the wind-induced undercatch of snowfall measurements use transfer functions to account for the expected reduction of the collection efficiency with increasing the wind speed for a particular catching-type gauge. Based on field experiments or numerical simulation, collection efficiency curves as a function of wind speed also involve further explanatory variables such as surface air temperature and/or precipitation type. However, while the wind speed or wind speed and temperature approach is generally effective at reducing the measurement bias, it does not significantly reduce the root-mean-square error (RMSE) of the residuals, implying that part of the variance is still unexplained. In this study, we show that using precipitation intensity as the explanatory variable significantly reduces the scatter of the residuals. This is achieved by optimized curve fitting of field measurements from the Marshall Field Site (Colorado, United States), using a nongradient optimization algorithm to ensure optimal binning of experimental data. The analysis of a recent quality-controlled dataset from the Solid Precipitation Intercomparison Experiment (SPICE) campaign of the World Meteorological Organization confirms the scatter reduction, showing that this approach is suitable to a variety of locations and catching-type gauges. Using computational fluid dynamics simulations, we demonstrate that the physical basis of the reduction in RMSE is the correlation of precipitation intensity with the particle size distribution. Overall, these findings could be relevant in operational conditions since the proposed adjustment of precipitation measurements only requires wind sensor and precipitation gauge data.
-
Abstract During spring 2011, an extreme flood occurred along the Richelieu River located in southern Quebec, Canada. The Richelieu River is the last section of the complex Richelieu basin, which is composed of the large Lake Champlain located in a valley between two large mountains. Previous attempts in reproducing the Richelieu River flow relied on the use of simplified lumped models and showed mixed results. In order to prepare a tool to assess accurately the change of flood recurrences in the future, a state‐of‐the‐art distributed hydrological model was applied over the Richelieu basin. The model setup comprises several novel methods and data sets such as a very high resolution river network, a modern calibration technique considering the net basin supply of Lake Champlain, a new optimization algorithm, and the use of an up‐to‐date meteorological data set to force the model. The results show that the hydrological model is able to satisfactorily reproduce the multiyear mean annual hydrograph and the 2011 flow time series when compared with the observed river flow and an estimation of the Lake Champlain net basin supply. Many factors, such as the quality of the meteorological forcing data, that are affected by the low density of the station network, the steep terrain, and the lake storage effect challenged the simulation of the river flow. Overall, the satisfactory validation of the hydrological model allows to move to the next step, which consists in assessing the impacts of climate change on the recurrence of Richelieu River floods. , Plain Language Summary In order to study the 2011 Richelieu flood and prepare a tool capable of estimating the effects of climate change on the recurrence of floods, a hydrological model is applied over the Richelieu basin. The application of a distributed hydrological model is useful to simulate the flow of all the tributaries of the Richelieu basin. This new model setup stands out from past models due to its distribution in several hydrological units, its high‐resolution river network, the calibration technique, and the high‐resolution weather forcing data set used to drive the model. The model successfully reproduced the 2011 Richelieu River flood and the annual hydrograph. The simulation of the Richelieu flow was challenging due to the contrasted elevation of the Richelieu basin and the presence of the large Lake Champlain that acts as a reservoir and attenuates short‐term fluctuations. Overall, the application was deemed satisfactory, and the tool is ready to assess the impacts of climate change on the recurrence of Richelieu River floods. , Key Points An advanced high‐resolution distributed hydrological model is applied over a U.S.‐Canada transboundary basin The simulated net basin supply of Lake Champlain and the Richelieu River discharge are in good agreement with observations of the 2011 flood The flow simulation is challenging due to the topographic and meteorological complexities of the basin and uncertainties in the observations
-
Abstract The Central Asian Pamir Mountains (Pamirs) are a high‐altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial‐interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31‐kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. δD values of terrestrial biomarkers showed insolation‐driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive δD shifts driven by changes in precipitation seasonality were observed at ca. 31–30, 28–26, and 17–14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation‐evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. , Plain Language Summary Lakes in arid Central Asia are particularly susceptible to the rise and fall of lake levels as a consequence of climatic changes. To evaluate drivers behind this phenomenon, we developed a record of humidity and lake levels throughout the last 31,000 years from a high‐altitude lake in the Pamir Mountains. Herefore, we combined hydrological and ecological reconstructions with climate model experiments. Results show that neither the enhanced inflow by melting glaciers nor the significantly increased precipitation amount was responsible for higher lake levels during the studied interval. Instead, reduced summer evaporation during cold episodes was the major trigger for lake transgressions. These fluctuations were driven by changes in radiative forcing (i.e., insolation and hence temperature change) as a consequence of changes in the Earth's orbit around the Sun. As such, our results suggest that a significant impact on lake levels in arid regions is also to be expected by the current anthropogenically driven global warming. , Key Points Proxies for hydroclimate and catchment ecology show insolation‐driven trends, with higher δD values during the LGM similar to outputs from climate models Reduced summer evaporation during cold episodes increased water availability Increased summer moisture caused higher lake levels at 31–30, 28–26, and 17–14 kyr BP coinciding with northern hemispheric rapid climate events
-
Abstract. The phase of precipitation and its distribution at the surface can affect water resources and the regional water cycle of a region. A field project was held in March–April 2015 on the eastern slope of the Canadian Rockies to document precipitation characteristics and associated atmospheric conditions. During the project, 60 % of the particles documented were rimed in relatively warm and dry conditions. Rain–snow transitions also occurred aloft and at the surface in sub-saturated conditions. Ice-phase precipitation falling through a saturated atmospheric layer with temperatures > 0 ∘C will start melting. In contrast, if the melting layer is sub-saturated, the ice-phase precipitation undergoes sublimation, which increases the depth of the rain–snow transition. In this context, this study investigates the role of sublimation and riming in precipitation intensity and type reaching the surface in the Kananaskis Valley, Alberta, during March–April 2015. To address this, a set of numerical simulations of an event of mixed precipitation observed at the surface was conducted. This event on 31 March 2015 was documented with a set of devices at the main observation site (Kananaskis Emergency Services, KES), including a precipitation gauge, disdrometer, and micro rain radar. Sensitivity experiments were performed to assess the impacts of temperature changes from sublimation and the role of the production of graupel (riming) aloft in the surface precipitation evolution. A warmer environment associated with no temperature changes from sublimation leads to a peak in the intensity of graupel at the surface. When the formation of graupel is not considered, the maximum snowfall rate occurred at later times. Results suggest that unrimed snow reaching the surface is formed on the western flank and is advected eastward. In contrast, graupel would form aloft in the Kananaskis Valley. The cooling from sublimation and melting by rimed particles increases the vertical shear near KES. Overall, this study illustrated that the presence of graupel influenced the surface evolution of precipitation type in the valley due to the horizontal transport of precipitation particles.
-
Abstract Changes in land cover and dust emission may significantly influence the Northern Hemisphere land monsoon precipitation (NHLMP), but observations are too short to fully evaluate their impacts. The “Green Sahara” during the mid‐Holocene (6,000 years BP) provides an opportunity to unravel these mechanisms. Here we show that during the mid‐Holocene, most of the NHLMP changes revealed by proxy data are reproduced by the Earth System model results when the Saharan vegetation cover and dust reduction are taken into consideration. The simulated NHLMP significantly increases by 33.10% under the effect of the Green Sahara. The North African monsoon precipitation increases most significantly. Additionally, the Saharan vegetation (dust reduction under vegetated Sahara) alone remotely intensifies the Asian (North American) monsoon precipitation through large‐scale atmospheric circulation changes. These findings imply that future variations in land cover and dust emissions may appreciably influence the NHLMP. , Plain Language Summary Northern Hemisphere land monsoon precipitation (NHLMP) provides water resources for about two thirds of the world's population, which is vital for infrastructure planning, disaster mitigation, food security, and economic development. Changes in land cover and dust emissions may significantly influence the NHLMP, but observations are too short to understand the mechanisms. The Sahara Desert was once covered by vegetation and dust emission was substantially reduced during the mid‐Holocene (6,000 years BP), which provides an opportunity to test the models' capability and unravel these mechanisms. Here we use an Earth System model and find that when the Saharan vegetation and dust reduction are taken into consideration, the simulated annual mean precipitation over most of the NHLM regions shows a closer agreement with proxy records. The sensitivity experiments show that the North African monsoon precipitation increases most significantly under the regional effects of “Green Sahara.” The Saharan vegetation (dust reduction under vegetated Sahara) alone also remotely increases the Asian (North American) monsoon precipitation through large‐scale atmospheric circulation changes. The knowledge gained from this study is critical for improved understanding of the potential impacts of the land cover and dust changes on the projected future monsoon change. , Key Points The first study of the impact of Saharan vegetation and dust reduction on the NHLMP Comparison with proxy records shows the effect of the Green Sahara improves the simulated NHLMP The Saharan vegetation and dust reduction significantly increase the NHLMP by 33.10%
-
Two Types of Ice Clouds (TICs) have been characterized in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating small ice crystals of less than 30 µm in diameter. The second type, TIC-2, are characterized by a low concentration of large precipitating ice crystals (>30 µm). Here, we evaluate the Weather Research and Forecasting (WRF) model performance both in space and time after implementing a parameterization based on a stochastic approach dedicated to the simulation of ice clouds in the Arctic. Well documented reference cases provided us in situ data from the spring of 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) campaign over Alaska. Simulations of the microphysical properties of the TIC-2 clouds on 15 and 25 April 2008 (polluted or acidic cases) and TIC-1 clouds on non-polluted cases are compared to DARDAR (raDAR/liDAR) satellite products. Our results show that the stochastic approach based on the classical nucleation theory, with the appropriate contact angle, is better than the original scheme in WRF model to represent TIC-1 and TIC-2 properties (ice crystal concentration and size) in response to the IN acidification.
-
Significance Volcanic eruptions can inject a large amount of aerosol particles, which interact with solar radiation and consequently can affect the climate worldwide, hence the intensity and frequency of extreme events for a few years following the eruption. However, only a handful of studies have investigated the impacts of volcanic eruptions on tropical cyclone activity. Through a set of sensitivity modeling experiments, our study demonstrates that volcanic eruptions by shifting the Intertropical convergence zone can impact tropical cyclone activity up to 4 years following the eruption. These results will prove valuable to society, allowing us to better prepare for the consequences of changes in tropical cyclone activity following large volcanic eruptions. , Volcanic eruptions can affect global climate through changes in atmospheric and ocean circulation, and therefore could impact tropical cyclone (TC) activity. Here, we use ensemble simulations performed with an Earth System Model to investigate the impact of strong volcanic eruptions occurring in the tropical Northern (NH) and Southern (SH) Hemisphere on the large-scale environmental factors that affect TCs. Such eruptions cause a strong asymmetrical hemispheric cooling, either in the NH or SH, which shifts the Intertropical Convergence Zone (ITCZ) southward or northward, respectively. The ITCZ shift and the associated surface temperature anomalies then cause changes to the genesis potential indices and TC potential intensity. The effect of the volcanic eruptions on the ITCZ and hence on TC activity lasts for at least 4 years. Finally, our analysis suggests that volcanic eruptions do not lead to an overall global reduction in TC activity but rather a redistribution following the ITCZ movement. On the other hand, the volcanically induced changes in El Niño-Southern Oscillation (ENSO) or sea-surface temperature do not seem to have a significant impact on TC activity as previously suggested.
-
During the mid‐Holocene (6 kyr BP), West Africa experienced a much stronger and geographically extensive monsoon than in the present day. Changes in orbital forcing, vegetation and dust emissions from the Sahara have been identified as key factors driving this intensification. Here, we analyse how the timing, origin and convergence of moisture fluxes contributing to the monsoonal precipitation change under a range of scenarios: orbital forcing only; orbital and vegetation forcings (Green Sahara); orbital, vegetation and dust forcings (Green Sahara‐reduced dust). We further compare our results to a range of reconstructions of mid‐Holocene precipitation from palaeoclimate archives. In our simulations, the greening of the Sahara leads to a cyclonic water vapour flux anomaly over North Africa with an anomalous westerly flow bringing large amounts of moisture into the Sahel from the Atlantic Ocean. Changes in atmospheric dust under a vegetated Sahara shift the anomalous moisture advection pattern northwards, increasing both moisture convergence and precipitation recycling over the northern Sahel and Sahara and the associated precipitation during the boreal summer. During this season, under both the Green Sahara and Green Sahara‐reduced dust scenarios, local recycling in the Saharan domain exceeds that of the Sahel. This points to local recycling as an important factor modulating vegetation‐precipitation feedbacks and the impact of Saharan dust emissions. Our results also show that temperature and evapotranspiration over the Sahara in the mid‐Holocene are close to Sahelian pre‐industrial values. This suggests that pollen‐based paleoclimate reconstructions of precipitation during the Green Sahara period are likely not biased by possible large evapotranspiration changes in the region.
-
Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds (OVOCs) were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms, with evidence for a dominant springtime contribution from eastern and southern Asia to the middle troposphere, and a major contribution from northern Asia to the surface. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow (0.03 cm s−1).