Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate
  • Accueil
Bibliographie complète

Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Leroux, Nicolas R. (Auteur)
  • Vionnet, Vincent (Auteur)
  • Thériault, Julie M. (Auteur)
Titre
Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate
Résumé
Abstract Accurate estimations of the precipitation phase at the surface are critical for hydrological and snowpack modelling in cold regions. Precipitation phase partitioning methods (PPMs) vary in their ability to estimate the precipitation phase at around 0°C and can significantly impact simulations of snowpack accumulation and melt. The goal of this study is to evaluate PPMs of varying complexity using high‐quality observations of precipitation phase and to assess the impact on snowpack simulations. We used meteorological data collected in Edmundston, New Brunswick, Canada, during the 2021 Saint John River Experiment on Cold Season Storms (SAJESS). These data were combined with manual observations of snow depth. Five PPMs commonly used in hydrological models were tested against observations from a laser‐optical disdrometer and a Micro Rain Radar. Most PPMs produced similar accuracy in estimating only rainfall and snowfall. Mixed precipitation was the most difficult phase to predict. The multi‐physics model Crocus was then used to simulate snowpack evolution and to diagnose model sensitivity to snowpack accumulation processes (PPM, snowfall density, and snowpack compaction). Sixteen snowpack accumulation periods, including nine warm accumulation events (average temperatures above −2°C) were observed during the study period. When considering all accumulation events, simulated changes in snow water equivalent ( SWE ) were more sensitive to the type of PPM used, whereas simulated changes in snow depth were more sensitive to uncertainties in snowfall density. Choice of PPM was the main source of model sensitivity for changes in SWE and snow depth when only considering warm events. Overall, this study highlights the impact of precipitation phase estimations on snowpack accumulation at the surface during near‐0°C conditions.
Publication
Hydrological Processes
Volume
37
Numéro
11
Pages
e15028
Date
11/2023
Abrév. de revue
Hydrological Processes
Langue
en
DOI
10.1002/hyp.15028
ISSN
0885-6087, 1099-1085
URL
https://onlinelibrary.wiley.com/doi/10.1002/hyp.15028
Consulté le
06/11/2024 15:46
Catalogue de bibl.
DOI.org (Crossref)
Référence
Leroux, N. R., Vionnet, V., & Thériault, J. M. (2023). Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate. Hydrological Processes, 37(11), e15028. https://doi.org/10.1002/hyp.15028
Auteur·e·s
  • Thériault, Julie M.
Document
  • Leroux et al. - 2023 - Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/6EP8P6QQ

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web