Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density
  • Accueil
Bibliographie complète

Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Jiao, Wenxing (Auteur)
  • Wang, Weifeng (Auteur)
  • Peng, Changhui (Auteur)
  • Lei, Xiangdong (Auteur)
  • Ruan, Honghua (Auteur)
  • Li, Haikui (Auteur)
  • Yang, Yanrong (Auteur)
  • Grabarnik, Pavel (Auteur)
  • Shanin, Vladimir (Auteur)
Titre
Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density
Résumé
Carbon allocation is an important mechanism through which plants respond to environmental changes. To enhance our understanding of maximizing carbon uptake by controlling planting densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modified and improved by introducing light, soil water, and soil nitrogen availability factors to quantify the allocation coefficients for different plant organs. The modified TRIPLEX-Management model simulation results were verified against observations from northern Jiangsu Province, China, and then the model was used to simulate dynamic changes in forest carbon under six density scenarios (200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted and observed variables of the mean diameter at breast height, mean height, and estimated aboveground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from 0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu Province. The density scenario results showed that the leaf and fine root allocation coefficients decreased with the increase in stand density, while the stem allocation increased. Overall, our study showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological functions related to carbon sequestration without sacrificing wood production in an economical way in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate conditions should be recommended to maximize carbon sequestration.
Publication
Forests
Volume
13
Numéro
8
Pages
1212
Date
2022-08-01
Abrév. de revue
Forests
Langue
en
DOI
10.3390/f13081212
ISSN
1999-4907
URL
https://www.mdpi.com/1999-4907/13/8/1212
Consulté le
13/08/2024 17:35
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
https://creativecommons.org/licenses/by/4.0/
Référence
Jiao, W., Wang, W., Peng, C., Lei, X., Ruan, H., Li, H., Yang, Y., Grabarnik, P., & Shanin, V. (2022). Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density. Forests, 13(8), 1212. https://doi.org/10.3390/f13081212
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/3UFXXXRC

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web