Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations
  • Accueil
Bibliographie complète

Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • McCray, Christopher D. (Auteur)
  • Thériault, Julie M. (Auteur)
  • Paquin, Dominique (Auteur)
  • Bresson, Émilie (Auteur)
Titre
Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations
Résumé
Abstract Given their potentially severe impacts, understanding how freezing rain events may change as the climate changes is of great importance to stakeholders including electrical utility companies and local governments. Identification of freezing rain in climate models requires the use of precipitation-type algorithms, and differences between algorithms may lead to differences in the types of precipitation identified for a given thermodynamic profile. We explore the uncertainty associated with algorithm selection by applying four algorithms (Cantin and Bachand, Baldwin, Ramer, and Bourgouin) offline to an ensemble of simulations of the fifth-generation Canadian Regional Climate Model (CRCM5) at 0.22° grid spacing. First, we examine results for the CRCM5 driven by ERA-Interim reanalysis to analyze how well the algorithms reproduce the recent climatology of freezing rain and how results vary depending on algorithm parameters and the characteristics of available model output. We find that while the Ramer and Baldwin algorithms tend to be better correlated with observations than Cantin and Bachand or Bourgouin, their results are highly sensitive to algorithm parameters and to the number of pressure levels used. We also apply the algorithms to four CRCM5 simulations driven by different global climate models (GCMs) and find that the uncertainty associated with algorithm selection is generally similar to or greater than that associated with choice of driving GCM for the recent past climate. Our results provide guidance for future studies on freezing rain in climate simulations and demonstrate the importance of accounting for uncertainty between algorithms when identifying precipitation type from climate model output. Significance Statement Freezing rain events and ice storms can have major consequences, including power outages and dangerous road conditions. It is therefore important to understand how climate change might affect the frequency and severity of these events. One source of uncertainty in climate studies of these events is related to the choice of algorithm used to detect freezing rain in model output. We compare the frequency of freezing rain identified using four different algorithms and find sometimes large differences depending on the algorithm chosen over some regions. Our findings highlight the importance of taking this source of uncertainty into account and will provide researchers with guidance as to which algorithms are best suited for climate studies of freezing rain.
Publication
Journal of Applied Meteorology and Climatology
Volume
61
Numéro
9
Pages
1107-1122
Date
09/2022
DOI
10.1175/JAMC-D-21-0202.1
ISSN
1558-8424, 1558-8432
URL
https://journals.ametsoc.org/view/journals/apme/61/9/JAMC-D-21-0202.1.xml
Consulté le
06/11/2024 15:52
Catalogue de bibl.
DOI.org (Crossref)
Autorisations
http://www.ametsoc.org/PUBSReuseLicenses
Référence
McCray, C. D., Thériault, J. M., Paquin, D., & Bresson, É. (2022). Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations. Journal of Applied Meteorology and Climatology, 61(9), 1107–1122. https://doi.org/10.1175/JAMC-D-21-0202.1
Auteur·e·s
  • Thériault, Julie M.
Document
  • McCray et al. - 2022 - Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing R.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/3DDP4UQK

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web