Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm
  • Accueil
Bibliographie complète

Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm

Consulter le document
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Cholette, Mélissa (Auteur)
  • Thériault, Julie M. (Auteur)
  • Milbrandt, Jason A. (Auteur)
  • Morrison, Hugh (Auteur)
Titre
Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm
Résumé
Abstract A prognostic equation for the liquid fraction of mixed-phase particles has been recently added to the Predicted Particle Properties (P3) bulk microphysics scheme. Mixed-phase particles are necessary to simulate key microphysical processes leading to various winter precipitation types, such as ice pellets and freezing rain. To illustrate the impacts of predicting the bulk liquid fraction, the 1998 North American Ice Storm is simulated using the Weather Research and Forecasting (WRF) Model with the modified P3 scheme. It is found that simulating partial melting by predicting the bulk liquid fraction produces higher mass and number mixing ratios of rain. This leads to smaller rain sizes reaching the refreezing layer as well as a decrease in the freezing rain accumulation at the surface by up to 30% in some locations compared to when no liquid fraction is predicted. The increase in fall speed and density and decrease of particle diameter during partial melting combined with an improved representation of the refreezing process in the modified P3 leads to generally higher total solid surface precipitation rates than using the original P3 scheme. There is also an increase of solid precipitation in regions of ice pellet accumulation. Overall, the simulation of mixed-phase particles notably impacts the vertical and spatial distributions of precipitation properties.
Publication
Monthly Weather Review
Volume
148
Numéro
9
Pages
3799-3823
Date
2020-09-01
Langue
en
DOI
10.1175/MWR-D-20-0026.1
ISSN
0027-0644, 1520-0493
Titre abrégé
Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event
URL
http://journals.ametsoc.org/doi/10.1175/MWR-D-20-0026.1
Consulté le
06/11/2024 15:55
Catalogue de bibl.
DOI.org (Crossref)
Référence
Cholette, M., Thériault, J. M., Milbrandt, J. A., & Morrison, H. (2020). Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm. Monthly Weather Review, 148(9), 3799–3823. https://doi.org/10.1175/MWR-D-20-0026.1
Auteur·e·s
  • Thériault, Julie M.
Document
  • Cholette et al. - 2020 - Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme F.pdf
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/2EV2RQ9M

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web