Votre recherche
Résultats 9 ressources
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.
-
Data include sample replication (N) and flood-ring frequencies (F1, F2) derived from black ash (Fraxinus nigra Marsh.) trees growing in the floodplain of the Driftwood River in northwestern Ontario reported in "Flood ring production modulated by river regulation in eastern boreal Canada" published in "Frontiers in Plant Science - Quantitative Wood Anatomy to Explore Tree Responses to Global Change" by Nolin et al. in 2021c. DriftwoodFR.csv, as in Fig. 4, F1 and F2 flood-rings chronologies per sites and distance class with sample replication (N) to reproduce the flood-ring frequencies. Harricana River F1 and F2 flood ring chronologies from Nolin et al., 2021b are also provided. DriftwoodRW.csv, as in Fig. 5, the mean site chronologies of total ring width with sample replication (N). LAT_LON_Driftwood.kml, the coordinate data for each F. nigra stand sampled on the Driftwood River, including Monteith dam location, in Google Earth format (.kml) meatadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Disastrous floods have caused millions of fatalities in the twentieth century, tens of billions of dollars of direct economic loss each year and serious disruption to global trade. In this Review, we provide a synthesis of the atmospheric, land surface and socio-economic processes that produce river floods with disastrous consequences. Disastrous floods have often been caused by processes fundamentally different from those of non-disastrous floods, such as unusual but recurring atmospheric circulation patterns or failures of flood defences, which lead to high levels of damage because they are unexpected both by citizens and by flood managers. Past trends in economic flood impacts show widespread increases, mostly driven by economic and population growth. However, the number of fatalities and people affected has decreased since the mid-1990s because of risk reduction measures, such as improved risk awareness and structural flood defences. Disastrous flooding is projected to increase in many regions, particularly in Asia and Africa, owing to climate and socio-economic changes, although substantial uncertainties remain. Assessing the risk of disastrous river floods requires a deeper understanding of their distinct causes. Transdisciplinary research is needed to understand the potential for surprise in flood risk systems better and to operationalize risk management concepts that account for limited knowledge and unexpected developments. River floods have direct and indirect consequences for society, and can cause fatalities, displacement and economic loss. This Review examines the physical and socioeconomic causes and impacts of disastrous river flooding, and past and projected trends in their occurrence.
-
Floods are among natural disasters that increasingly threaten society, especially with current and future climate change trends. Several tools have been developed to help planners manage the risks associated to flooding, including the mapping of flood-prone areas, but one of the major challenges is still the availability of detailed data, particularly bathymetry. This manuscript compares two modeling approaches to produce flood maps. An innovative large-scale approach that, without bathymetric data, estimates by inverse modeling the bed section for a given flow and a given roughness coefficient through 1 D/2D hydraulic modeling (LISFLOOD-FP). And a local approach, with a detailed coupled 1 D/2D hydraulic model (HEC-RAS) that uses all available information at the bed and floodplain (LiDAR and bathymetry). Both implementations revealed good performance values for flood peak levels as well as excellent fit indices in describing the areal extent of flooding. As expected, the local approach is more accurate, but the results of the large-scale approach are very promising especially for areas lacking bathymetric data and for large-scale governmental programs.
-
Abstract Floods are the most frequently occurring natural hazard in Canada. An in‐depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics‐based approach is implemented to understand the seasonality of annual‐maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt‐induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme‐flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood‐peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50‐year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.
-
In northeastern boreal Canada, the long-term perspective on spring flooding is hampered by the absence of long gage records. Changes in the tree-ring anatomy of periodically flooded trees have allowed the reconstruction of historical floods in unregulated hydrological systems. In regulated rivers, the study of flood rings could recover past flood history, assuming that the effects of hydrological regulation on their production can be understood. This study analyzes the effect of regulation on the flood-ring occurrence (visual intensity and relative frequency) and on ring widths in Fraxinus nigra trees growing at five sites distributed along the Driftwood River floodplain. Driftwood River was regulated by a dam in 1917 that was replaced at the same location in 1953. Ring width revealed little, to no evidence, of the impact of river regulation, in contrast to the flood rings. Prior to 1917, high relative frequencies of well-defined flood rings were recorded during known flood years, as indicated by significant correlations with reconstructed spring discharge of the nearby Harricana River. After the construction and the replacement of the dam, relative frequencies of flood rings and their intensities gradually decreased. Flood-ring relative frequencies after 1917, and particularly after 1953, were mostly composed of weakly defined (less distinct) flood rings with some corresponding to known flood years and others likely reflecting dam management. The strength of the correlations with the instrumental Harricana River discharge also gradually decrease starting after 1917. Compared with upper floodplain trees, shoreline trees at each site recorded flood rings less frequently following the construction of the first but especially of the second dam, indicating that water level regulation limited flooding in the floodplains. Compared with the downstream site to the dam, the upstream ones recorded significantly more flood rings in the postdam period, reemphasizing the importance of considering the position of the site along with the river continuum and site conditions in relation to flood exposure. The results demonstrated that sampling trees in multiple riparian stands and along with various hydrological contexts at a far distance of the dams could help disentangle the flooding signal from the dam management signal.
-
Data include flood ring (F1, F2) and earlywood vessel chronologies (MVA, N) derived from black ash (Fraxinus nigra Marsh.) trees growing in eastern boreal Canada near Lake Duparquet (Quebec) reported in "Spatial coherence of the spring flood signal among major river basins of eastern boreal Canada inferred from flood rings" published in "Journal of Hydrology" by Nolin et al. in 2021. F1_F2_chrono.csv, as in Figure 3, the F1 and F2 flood-ring chronologies per sites (sites are coded as in Table 1) with sample replication (n); LAT_LON.kml, the coordinate data for each site and sampled tree; MVA_N_chrono.csv, as in Figure 5, the MVA and N chronologies per river basins (river basins are coded as in Table 1); REC1.csv, the reconstruction of the Harricana River spring discharge from 1771 to 2016 reported in "Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada" published in "Global and Planetary Change" by Nolin et al. 2021. metadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.