Votre recherche
Résultats 18 ressources
-
Abstract A major challenge in ecology is to link patterns and processes across different spatial and temporal scales. Flood plains are ideal model ecosystems to study (i) the processes that create and maintain environmental heterogeneity and (ii) to quantify the effects of environmental heterogeneity on ecosystem functioning and biodiversity. Fluvial processes of cut‐and‐fill alluviation create new channels, bars and benches within a flood plain that in turn provides new surface for subsequent vegetative recruitment and growth resulting in a shifting mosaic of interconnected aquatic and terrestrial habitat patches. Composition and spatial arrangement of these habitat patches control the movement of organisms and matter among adjacent patches; and the capacity of a habitat to process matter depends on the productivity of adjacent patches and on the exchange among these patches. The exchange of matter and organisms among habitats of different age and productivity is often pulsed in nature. Small pulses of a physical driver (e.g. short‐term increase in flow) can leach large amounts of nutrients thereby stimulating primary production in adjacent aquatic patches, or trigger mass emergence of aquatic insects that may in turn impact recipient terrestrial communities. Hence, biodiversity in a river corridor context is hierarchically structured and strongly linked to the dynamic biophysical processes and feedback mechanisms that drive these chronosequences over broad time and space scales. Today, the active conversion of degraded ecosystems back to a more heterogeneous and dynamic state has become an important aspect of restoration and management where maintaining or allowing a return to the shifting habitat mosaic dynamism is the goal with the expected outcome greater biodiversity and clean water among other valuable ecosystem goods and services. Copyright © 2009 John Wiley & Sons, Ltd.
-
In June 2005, the headwater tributaries of the Saskatchewan River Basin in the western Canadian province of Alberta were struck by four heavy rain events. Runoff from the rainfalls resulted in three floods which extended from Alberta through the provinces of Saskatchewan and Manitoba, causing at least four deaths and property damages of CAD $400 million.
-
The impact of climate change on the frequency distribution of spring floods in the Red River basin is investigated. Several major floods in the last couple of decades have caused major damages and inconvenience to people living in the Red River flood plain south of Winnipeg, and have raised the question of whether climate change is at least partly responsible for what appears to be more frequent occurrences of high spring runoff. To investigate whether this is the case, a regression model is used to associate spring peak flow at the US–Canada border with predictor variables that include antecedent precipitation in the previous fall (used as a proxy for soil moisture at freeze-up), winter snow accumulation and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to derive information about possible changes to the predictor variables in the future, and this information is then used to derive flood distributions for future climate conditions. While mean monthly...
-
In late June 2013, heavy rainfall and rapidly melting alpine snow triggered flooding throughout much of the southern half of Alberta. Heavy rainfall commenced on 19 June and continued for 3 days. When the event was over, more than 200 mm and as much as 350 mm of precipitation had fallen over the Front Ranges of the Canadian Rocky Mountains. Tributaries to the Bow River including the Ghost, Kananaskis, Elbow, Sheep and Highwood, and many of their tributaries, all reached flood levels. The storm had a large spatial extent causing flooding to the north and south in the Red Deer and Oldman Basins, and also to the west in the Elk River in British Columbia. Convergence of the nearly synchronous floodwaters downstream in the South Saskatchewan River system caused record high releases from Lake Diefenbaker through Gardiner Dam. Dam releases in Alberta and Saskatchewan attenuated the downstream flood peak such that only moderate flooding occurred in Saskatchewan and Manitoba. More than a dozen municipalities decla...
-
Gravel-bed rivers are disproportionately important to regional biodiversity, species interactions, connectivity, and conservation. , Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
-
The mountain headwater Bow River at Banff, Alberta, Canada was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain-on-snow (ROS) events, the latter type which include floods events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales.
-
Floods have potentially devastating consequences on populations, industries and environmental systems. They often result from a combination of effects from meteorological, physiographic and anthropogenic natures. The analysis of flood hazards under a multivariate perspective is primordial to evaluate several of the combined factors. This study analyzes spring flood-causing mechanisms in terms of the occurrence, frequency, duration and intensity of precipitation as well as temperature events and their combinations previous to and during floods using frequency analysis as well as a proposed multivariate copula approach along with hydrometeorological indices. This research was initiated over the Richelieu River watershed (Quebec, Canada), with a particular emphasis on the 2011 spring flood, constituting one of the most damaging events over the last century for this region. Although some work has already been conducted to determine certain causes of this record flood, the use of multivariate statistical analysis of hydrologic and meteorological events has not yet been explored. This study proposes a multivariate flood risk model based on fully nested Archimedean Frank and Clayton copulas in a hydrometeorological context. Several combinations of the 2011 Richelieu River flood-causing meteorological factors are determined by estimating joint and conditional return periods with the application of the proposed model in a trivariate case. The effects of the frequency of daily frost/thaw episodes in winter, the cumulative total precipitation fallen between the months of November and March and the 90th percentile of rainfall in spring on peak flow and flood duration are quantified, as these combined factors represent relevant drivers of this 2011 Richelieu River record flood. Multiple plausible and physically founded flood-causing scenarios are also analyzed to quantify various risks of inundation.
-
We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile-quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large-scale climate state should be considered prior to the design and construction of infrastructure.
-
In this study future flooding frequencies have been estimated for the Grand River catchment located in south - western Ontario, Canada. Historical and future climatic projections made by fifteen Coupled Model Inter - comparison Project - 3 climate models are bias - corrected and downscaled before they are used to obtain mid - and end of 21 st century streamflow projections. By comparing the future projected and historically observed precipitation and temperature record s it is found that the mean and extreme temperature events will intensify in future across the catchment. The increase is more drastic in the case of extreme events than the mean events. The sign of change in future precipitation is uncertain. Further flow extremes are expected to increase in magnitude and frequency in future across the catchment. The confidence in the projection is more for low return period (<10 years) extreme events than higher return period (10 - 100 years) events. It can be expected that increases in temperature will play a dominant role in increasing the magnitude of low return period flooding events while precipitation seems to play an important role in shaping the high return period events.
-
The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.
-
The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies.