Votre recherche
Résultats 191 ressources
-
Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Study region: This study aims at the Kunhar River Basin, Pakistan, that has been facing repeated flood occurrences on a recurring basis. As the flood susceptibility of this area is high, its topographic complexity demands correct predictive modeling for strategic flood planning. Study focus: We developed a system of flood susceptibility mapping based on Geographic Information Systems (GIS), Principal Component Analysis (PCA), and Support Vector Machine (SVM) classification. Four kernel functions were applied, and the highest-performing was the Radial Basis Function (SVM-RBF). The model was validated and trained using historical flood inventories, morphometric parameters, and hydrologic variables, and feature dimensionality was reduced via PCA for increased efficiency. New hydrological insights: The SVM-RBF model recorded an AUC of 0.8341, 88.02% success, 84.97% predictability, 0.89 Kappa value, and F1-score of 0.86, all of which indicated high predictability. Error analysis yielded a PBIAS of +2.14%, indicating negligible overestimation bias but within limits acceptable in hydrological modeling. The results support the superiority of the SVM-RBF approach compared to conventional bivariate methods in modeling flood susceptibility over the complex terrain of mountains. The results can be applied in guiding evidence-based flood mitigation, land-use planning, and adaptive management in the Kunhar River Basin. © 2025 The Author(s)
-
Flood risk assessment is an effective tool for disaster prevention and mitigation. As land use is a key factor influencing flood disasters, studying the impact of different land use patterns on flood risk is crucial. This study evaluates flood risk in the Chang-Zhu-Tan (CZT) urban agglomeration by selecting 17 socioeconomic and natural environmental factors within a risk assessment framework encompassing hazard, exposure, vulnerability, and resilience. Additionally, the Patch-Generating Land Use Simulation (PLUS) and multilayer perceptron (MLP)/Bayesian network (BN) models were coupled to predict flood risks under three future land use scenarios: natural development, urban construction, and ecological protection. This integrated modeling framework combines MLP’s high-precision nonlinear fitting with BN’s probabilistic inference, effectively mitigating prediction uncertainty in traditional single-model approaches while preserving predictive accuracy and enhancing causal interpretability. The results indicate that high-risk flood zones are predominantly concentrated along the Xiang River, while medium-high- and medium-risk areas are mainly distributed on the periphery of high-risk zones, exhibiting a gradient decline. Low-risk areas are scattered in mountainous regions far from socioeconomic activities. Simulating future land use using the PLUS model with a Kappa coefficient of 0.78 and an overall accuracy of 0.87. Under all future scenarios, cropland decreases while construction land increases. Forestland decreases in all scenarios except for ecological protection, where it expands. In future risk predictions, the MLP model achieved a high accuracy of 97.83%, while the BN model reached 87.14%. Both models consistently indicated that the flood risk was minimized under the ecological protection scenario and maximized under the urban construction scenario. Therefore, adopting ecological protection measures can effectively mitigate flood risks, offering valuable guidance for future disaster prevention and mitigation strategies. © 2025 by the authors.
-
This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression targets through a shared feature extraction structure, enhancing consistency and generalization. Among six tested architectures, the Le5SD_CBAM model—integrating a Convolutional Block Attention Module (CBAM)—achieved the best performance, with 83% accuracy, an Area Under the ROC Curve (AUC) of 0.91 for flood susceptibility classification, and a mean absolute error (MAE) of 0.12 m and root mean squared error (RMSE) of 0.18 m for depth estimation. The model’s spatial predictions aligned well with hydrological principles and past flood records, accurately identifying low-lying flood-prone zones and capturing localized inundation patterns influenced by infrastructure and micro-topography. Importantly, it detected spatial mismatches between susceptibility and depth, demonstrating the benefit of joint modeling. Variable importance analysis highlighted elevation as the dominant predictor, while distances to roads, rivers, and drainage systems were also key contributors. In contrast, secondary terrain attributes had limited influence, indicating that urban infrastructure has significantly altered natural flood flow dynamics. Although the model lacks dynamic forcings such as rainfall and upstream inflows, it remains a valuable tool for flood risk mapping in data-scarce settings. The bivariate-output framework improves computational efficiency and internal coherence compared to separate single-task models, supporting its integration into urban flood management and planning systems. © 2025 by the authors.
-
Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.
-
Flooding is an escalating hazard in arid and rapidly urbanizing environments such as Jeddah, Saudi Arabia, where the lack of historical flood records and sparse monitoring systems challenge effective risk prediction. To address this gap, this study aims to develop an accurate and interpretable flood susceptibility-mapping framework tailored to data-scarce urban settings. The research integrates a stacked ensemble model—comprising machine learning: XGBoost, CatBoost, and Histogram-based Gradient Boosting (HGB)—with SHapley Additive exPlanations (SHAP) to enhance prediction accuracy and model transparency. Random Forest was excluded from the final model stack due to inferior classification performance. A diverse set of geospatial inputs, including digital elevation model, slope, flow direction, Curve Number, topographic indices, and LULC (from ESRI Sentinel-2) were used as predictors. Furthermore, 92 and 198 flooded and non-flooded points were used for model validation. The model achieved strong predictive performance (AUC = 0.92, Accuracy = 0.82) on the validation set. In the absence of official flood records, model outputs were intersected with road network data to identify 395 road points in highly susceptible zones. Although these points do not represent a formal validation dataset—due to the general lack of detailed flood event records in the region, particularly in relation to infrastructure—they provide a valuable proxy for identifying flood-prone road segments. SHAP explainability analysis revealed that TRI, TPI, and distance to rivers were the most globally influential features, while Curve Number and LULC were key drivers of high-risk predictions. The model mapped 139 km2 (8.7 %) of the area as very high flood susceptibility and 325 km2 (20.3 %) as high susceptibility, outperforming individual learners. These results confirm that stacked ensemble learning, paired with explainable AI and creative validation strategies, can produce reliable flood susceptibility maps even in data-constrained contexts. This framework offers a transferable and scalable solution for flood risk assessment in similar arid and urbanizing environments. © 2025 Elsevier Ltd
-
The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)
-
Flooding remains a critical hydrological hazard in the Itang watershed within the Lower Baro-Akobo Basin, requiring an in-depth assessment of flood susceptibility. This study employs a multi-criteria evaluation method, integrating key geospatial and hydrological parameters such as topographic slope, elevation, land use/land cover, River proximity, drainage network density, precipitation intensity, and soil properties. Utilizing a Multi-Criteria Decision Analysis (MCDA) approach within the ArcMap 10.3.1 environment, a flood hazard zonation map was generated, classifying the watershed into five risk categories: Very high, high, moderate, low, and very low. The findings reveal that approximately 69.69% of the watershed falls within the high to very high flood risk zones, predominantly influenced by low-lying Elevation, gentle slopes, proximity to the river, land cover dynamics, high drainage density, and precipitation variability. These insights emphasize the necessity of integrating robust flood mitigation measures, early warning mechanisms, and sustainable watershed management interventions to enhance flood resilience and reduce hydrological risks in the study watershed. © The Author(s) 2025.
-
Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors
-
Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.
-
Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors
-
Urban flood disasters pose substantial threats to public safety and urban development, with climate change exacerbating the intensity, frequency, and consequences of such events. While existing research has predominantly concentrated on flood control and disaster response, limited attention has been paid to the underlying drivers and evolutionary mechanisms of urban flood resilience. This study applies the resilience framework to develop an integrated methodology for assessing urban flood resilience. Focusing on three coastal provinces in China that frequently experience severe flooding, the study identifies fifteen key resilience drivers to construct a compound driver system. The evolution of flood resilience is examined through the lens of the Pressure-State-Response (PSR) model, which categorizes the drivers into three distinct dimensions. The Decision Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Model (ISM) methods are employed to analyze the interrelationships and hierarchical structure among drivers. In parallel, a system dynamics (SD) modeling approach is used to construct causal-loop and stock-flow diagrams, revealing the complex interdependencies and critical pathways across resilience dimensions. The analysis identifies rainfall intensity as the most influential driver in shaping urban flood resilience. Scenario simulations based on the SD model explore variations in resilience performance under three developmental pathways. Findings suggest that enhancing response resilience is crucial under current flood control trajectories. This study contributes novel conceptual and methodological insights into the measurement and evolution of urban flood resilience. It offers actionable guidance for policymakers aiming to strengthen flood risk governance and urban safety. © 2025 Elsevier Ltd
-
Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors
-
This review examines the role of vegetation as a nature-based solution (NBS) for sustainable river corridor management, integrating a wide range of interdisciplinary domains. It synthesizes studies addressing global challenges in river systems, the worldwide adoption of vegetation-based solutions and location-specific field observations from major Indian rivers such as the Brahmaputra and Ganga. This paper also reviews flume-scale experiments on vegetation–flow interactions and explores the biomechanical properties of vegetation, such as root reinforcement that contribute to riverbank stability. In addition, it discusses the selection of suitable species based on specific climatic regions, as reported in the literature. Building on this interdisciplinary understanding, this review highlights the vital role of vegetation in mitigating bank erosion, regulating sediment transport, attenuating floods and enhancing the overall health and resilience of riverine ecosystems and communities. It proposes an integrated framework that combines vegetation with biodegradable materials such as bamboo fencing and geo-bags and conventional engineering measures to address high-flow conditions and ensure long-term riverbank stability. Additionally, a flume-scale physical model study was conducted to investigate near-bank hydrodynamics in the presence of a series of three spurs and a combination of rigid and flexible vegetation. The results indicate that vegetation significantly reduces streamwise velocity near the bank, achieving performance comparable to that of the spur arrangement. This study identifies key challenges, including appropriate species selection, long-term maintenance of vegetation-based solutions and the need for adaptive management strategies. It further emphasizes the importance of stakeholder engagement for successful and sustainable implementation. © 2025 John Wiley & Sons Ltd.
-
Extreme and compound events disrupt lake ecosystems worldwide, with their frequency, intensity and duration increasing in response to climate change. In this Review we outline evidence of the occurrence, drivers and impact of extreme and compound events in lakes. Univariate extremes, which include lake heatwaves, droughts and floods, underwater dimming episodes and hypoxia, can occur concurrently, sequentially or simultaneously at different locations to form multivariate, temporal or spatial compound events, respectively. The probability of extreme and compound events is increasing owing to climate warming, declining lake water levels in half of lakes globally, and basin-scale anthropogenic stressors, such as nutrient pollution. Most in-lake extreme events are inherently compound in nature owing to tightly coupled physical, chemical and biological underlying processes. The cascading effects of compound events propagate or dissipate through lakes. For example, a heatwave might trigger stratification and oxygen depletion, subsequently leading to fish mortality or the proliferation of harmful algal blooms. Interactions between extremes are increasingly observed and can trigger feedback loops that exacerbate harmful algal blooms and fishery declines, leading to severe ecological and socio-economic consequences. Managing the increasing risk of compound events requires integrated models, coordinated monitoring and proactive adaptation strategies tailored to the vulnerabilities of lake ecosystems. © Springer Nature Limited 2025.
-
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.
-
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. © 2025 by the authors.
-
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. © 2025 by the authors.