Votre recherche
Résultats 36 ressources
-
This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land management. Land subsidence and coastal floods affect a major proportion of the population in the ICZM, with subsidence being significant contributing factors, but information on the extent of susceptible areas, monitoring, and wide-area coverage is limited. Land subsidence distribution is demarcated using Interferometric Synthetic Aperture Radar (InSAR) time-series data (2015–2022), and integrated with coastal flood susceptibility derived from Analytic Hierarchy Process (AHP)-based weights to model impacts on land cover. Results indicate maximum subsidence rates of 46 mm/year (descending orbit) and 61 mm/year (ascending orbit); reflecting a gradual increase in subsidence trends with an average rate of 13 mm/year. In the worst-case scenario, within the ICZM area of 2262 km2, nearly 12% of the total built-up land cover with the highest population density is exposed to land subsidence, while exposure to coastal floods is relatively larger, covering nearly 34% of the built-up area. Almost 27% of the built-up area is exposed to the combined effects of both land subsidence and coastal floods, under present sea level conditions, with increasing risks of coastal floods over 2040, 2050 and 2100, due to both combinations. This research prioritizes areas for further study and provides a scientific foundation for resilience strategies aimed at ensuring sustainable coastal development within the ICZM. © 2025 by the authors.
-
Study region: Shanghai, China Study focus: This paper proposes a comprehensive framework for quantifying storm surge floods in coastal cities by incorporating the influences of both climate change and urbanization. The framework achieves a physically process-based numerical simulation of storm surge-induced flood hazards due to tropical cyclones in coastal cities by coupling the fast flood inundation model (SFINCS) and the land use change model (GeoSOS-FLUS), along with the numerical nested model for storm surges (Delft 3D Flow & Wave). Using a 1000-year tropical cyclone simulated by the STORM model as an example, this study analyzes and maps coastal flood impacts under the moderate climate scenario (SSPs245) and high emission scenario (SSPs585), and also evaluates the impact of land use changes on these scenarios. New hydrological insights for the region: Taking Shanghai, China as an example, the results show that by 2100, urban land use changes will lead to an increase in the extent of 1000-year TC flooding areas by 4.91–34.00 %, underestimating the inundation area of storm surges if future urban land use changes are not considered. Additionally, our predictions indicate the vulnerability of Chongming island and Changxing island to the impacts of climate change, despite the protective role of coastal embankments considered in the tropical cyclone storm surge simulation. The results of this study represent an important contribution to a better understanding of how future urban land use changes will affect storm surge flooding risks in and around Shanghai. The proposed methodology can be applied to coastal areas worldwide that are vulnerable to tropical cyclones, aiding in the formulation of hazard mitigation policies to alleviate flood impacts in these regions. © 2025 The Authors
-
Abstract. Developing predictions of coastal flooding risk on subseasonal timescales (2–6 weeks in advance) is an emerging priority for the National Oceanic and Atmospheric Administration (NOAA). In this study, we assess the ability of two current operational forecast systems, the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) and the Centre National de Recherches Météorologiques climate model (CNRM), to make subseasonal ensemble predictions of the non-tidal residual component of coastal water levels at United States coastal gauge stations for the period 2000–2019. These models were chosen because they assimilate satellite altimetry at forecast initialization and attempt to predict the mean sea level, including a global mean component whose absence in other forecast systems complicates assessment of tide gauge reforecast skill. Both forecast systems have skill that exceeds damped persistence for forecast leads through 2–3 weeks, with IFS skill exceeding damped persistence for leads up to 6 weeks. Post-processing forecasts to include the inverse barometer effect, derived from mean sea level pressure forecasts, improves skill for relatively short forecast leads (1–3 weeks). Accounting for vertical land motion of each gauge primarily improves skill for longer leads (3–6 weeks), especially for the Alaskan and Gulf coasts; sea-level trends contribute to reforecast skill for both model and persistence forecasts, primarily for the East and Gulf coasts. Overall, we find that current forecast systems have sufficiently high levels of deterministic and probabilistic skill to be used in support of operational coastal flood guidance on subseasonal timescales.
-
Coastal high tide flooding doubled in the U.S. between 2000 and 2022 and sea level rise (SLR) due to climate change will dramatically increase exposure and vulnerability to flooding in the future. However, standards for elevating buildings in flood hazard areas, such as base flood elevations set by the Federal Emergency Management Agency, are based on historical flood data and do not account for future SLR. To increase flood resilience in flood hazard areas, federal, state, regional, and municipal planning initiatives are developing guidance to increase elevation requirements for occupied spaces in buildings. However, methods to establish a flood elevation that specifically accounts for rising sea levels (or sea level rise-adjusted design flood elevation (SLR-DFE)) are not standardized. Many municipalities or designers lack clear guidance on developing or incorporating SLR-DFEs. This study compares guidance documents, policies, and methods for establishing an SLR-DFE. The authors found that the initiatives vary in author, water level measurement starting point, SLR scenario and timeframe, SLR adjustment, freeboard, design flood elevation, application (geography and building type), and whether it is required or recommended. The tables and graph compare the different initiatives, providing a useful summary for policymakers and practitioners to develop SLR-DFE standards. © 2025 by the authors.
-
In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.
-
Urban flood disasters pose substantial threats to public safety and urban development, with climate change exacerbating the intensity, frequency, and consequences of such events. While existing research has predominantly concentrated on flood control and disaster response, limited attention has been paid to the underlying drivers and evolutionary mechanisms of urban flood resilience. This study applies the resilience framework to develop an integrated methodology for assessing urban flood resilience. Focusing on three coastal provinces in China that frequently experience severe flooding, the study identifies fifteen key resilience drivers to construct a compound driver system. The evolution of flood resilience is examined through the lens of the Pressure-State-Response (PSR) model, which categorizes the drivers into three distinct dimensions. The Decision Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Model (ISM) methods are employed to analyze the interrelationships and hierarchical structure among drivers. In parallel, a system dynamics (SD) modeling approach is used to construct causal-loop and stock-flow diagrams, revealing the complex interdependencies and critical pathways across resilience dimensions. The analysis identifies rainfall intensity as the most influential driver in shaping urban flood resilience. Scenario simulations based on the SD model explore variations in resilience performance under three developmental pathways. Findings suggest that enhancing response resilience is crucial under current flood control trajectories. This study contributes novel conceptual and methodological insights into the measurement and evolution of urban flood resilience. It offers actionable guidance for policymakers aiming to strengthen flood risk governance and urban safety. © 2025 Elsevier Ltd
-
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. © 2025 by the author.
-
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. © 2025 by the authors.
-
This study evaluates the impacts of projected sea level rise (SLR) on coastal flooding across major Indian cities: Mumbai, Kolkata, Chennai, Visakhapatnam, Surat, Kochi, Thiruvananthapuram, and Mangaluru. Machine learning models, including Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GB), has been employed to assess flood risks under four Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585) emission scenarios. The research utilized these models because they demonstrate high performance in handling difficult data relationships and both temporal patterns and sophisticated environmental data. SLR projections provided by computers generate forecasts that combine with digital elevation models (DEMs) to determine coastal flooding risks and locate flood-prone areas. Results reveal that Mumbai and Kolkata face the highest flood risks, particularly under high emission scenarios, while Kochi and Mangaluru exhibit moderate exposure. Model performance is validated using residual analysis and Receiver Operating Characteristic (ROC) curves, confirming reliable predictive accuracy. These findings provide essential information for urban planners and policymakers to prioritize climate adaptation strategies in vulnerable coastal cities. © The Author(s) 2025.
-
Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Coastal areas are particularly vulnerable to flooding from heavy rainfall, sea storm surge, or a combination of the two. Recent studies project higher intensity and frequency of heavy rains, and progressive sea level rise continuing over the next decades. Pre-emptive and optimal flood defense policies that adaptively address climate change are needed. However, future climate projections have significant uncertainty due to multiple factors: (a) future CO2 emission scenarios; (b) uncertainties in climate modelling; (c) discount factor changes due to market fluctuations; (d) uncertain migration and population growth dynamics. Here, a methodology is proposed to identify the optimal design and timing of flood defense structures in which uncertainties in 21st century climate projections are explicitly considered probabilistically. A multi-objective optimization model is developed to minimize both the cost of the flood defence infrastructure system and the flooding hydraulic risk expressed by Expected Annual Damage (EAD). The decision variables of the multi-objective optimization problem are the size of defence system and the timing of implementation. The model accounts for the joint probability density functions of extreme rainfall, storm surge and sea level rise, as well as the damages, which are determined dynamically by the defence system state considering the probability and consequences of system failure, using a water depth–damage curve related to the land use (Corine Land Cover); water depth due to flooding are calculated by hydraulic model. A new dominant sorting genetic algorithm (NSGAII) is used to solve the multi-objective problem optimization. A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally a swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set of optimal adaptation policies, quantifying size and timing of flood defence constructions for different climate scenarios and belonging to the Pareto curve obtained by the NSGAII are identified for such a case study to mitigate the risk of flooding and to aid decision makers.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
Changes in society's vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (g10000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
-
L’adaptation au changement climatique est un nouvel enjeu pour la gestion des territoires. Au niveau local, elle apparaît souvent comme une injonction, alors même que, pour l’instant, elle est un concept flou. Elle est présentée comme l’application de bonnes pratiques, mais les questions « qui s’adapte à quoi ? » et « pourquoi ? » demeurent implicites. En explicitant ces éléments, nous proposons de montrer que l’adaptation est une question plurielle et politique. À partir de l’analyse des documents de planification et des plans d’action faisant référence aux changements globaux sur un territoire littoral, nous montrons l’existence de quatre logiques d’adaptation distinctes, plus ou moins transformatrices du système socioécologique, que l’on peut appréhender à partir de la typologie suivante : « contrôler et maintenir », « faire faire », « réguler » et « reconfigurer », qui portent en germe différentes reconfigurations socioéconomiques et politiques. , Since the 2000s, “adaptation” is a new dictate for the management of local territories in France, but its implementation is fairly limited. Adaptation is mainly a semantically unclear and loosely defined concept. Decision-makers could “operationalize” adaptation by simply applying a specific methodology. However, adaptation is not a mere mechanism; it is also a process that implies economic, social and ecological trade-offs for the socio-ecological system. These political dimensions are often unformulated. In order to provide a vehicle to clarify this concept and its political dimensions, we propose a typology of adaptation measures. What does adaptation mean? Adjustment of what (territories, populations, communities, local economies, etc.), to what (climate change, global change) and with what effects? We reviewed local actions and strategic plans related to climate but also to urban planning, flooding and water management on the eastern coastal area of Languedoc Roussillon in Mediterranean France. We conducted and analyzed semi-structured interviews with institutional actors. We analyzed and classified public policy instruments, associated the underlying “logic” (raise limiting factors, create a new awareness, etc.), and their potential effects. Throughout our effort to develop a typology, we have highlighted the political dimensions of adaptation actions and shed a light on trade-offs linked to adaptation choices.
-
The coast is a complex environment that comprises seawater, underwater, soil, atmosphere, and other environmental factors. Traditional and new pollutants, represented by oil spills and microplastic (MPs), persist in posing a constant threat to the ecosystems and social-economic features of coastal regions. Besides, the shoreline is exposed to various environment conditions, which may significantly affect the behaviors of pollutants on beaches. An in-depth understanding of the occurrence and fate of pollutants in coastal areas is a prerequisite for the development of sound prevention and remediation strategies. Firstly, the physicochemical behavior of crude oil on various types of shorelines under different environmental conditions were reviewed. The penetration, remobilization, and retention of stranded oil on shorelines are affected by the beach topography and the natural environment. The attenuation and fate of oil on shorelines from laboratory and field experiments were discussed. In addition, the source, type, distribution, and factors of MPs in the coastal areas were summarized. What is more, the occurrence and environmental risk of emerging plastics waste—personal protective equipment (PPE)—in the coastal environment during and pandemic were discussed. Then, the role of natural nanobubbles (NBs) in the fate and transport of spilled oil were investigated through laboratory experiments and model simulations. NBs significantly increased the concentration of dissolved oxygen as well as changed the pH, zeta potential, and surface tension of the water. With the assistance of external energy, the bulk NBs enhanced the efficiency in oil detachment from the surface of the substrate. At the same time, the surface NBs on the substrate obstructed the downward transport of oil colloids. Considering the behavior between the NBs in two different phases and the oil droplets, the oil droplets tended to bind to the NBs. Next, the behavior and movement of various MPs in the presence of bulk NBs was explored. In the presence of NBs, the binding of MPs and NBs resulted in an increase in the measured average particle size and concentration. The velocity of motion of MPs driven by NBs varies under different salinity conditions. The increase in ionic strength reduced the energy barrier between particles and promoted their aggregation. Thus, the binding of NBs and MPs became more stable, which in turn affected the movement of MPs in the water. Polyethylene (PE1) with small particle size was mainly affected by Brownian motion and its rising was limited, therefore polyethylene (PE2) with large particle size rose faster than PE1 in suspension, especially in the presence of NBs. The effect of nanobubbles on the mobilization of MPs in shorelines subject to seawater infiltration was further studied. The motion of MPs under continuous and transient conditions, as well as the upward transport induced with flood were considered. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the matrix. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under both continuous and transient conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances. Finally, the changing characteristics and environmental behaviors of PPE wastes when exposed to the shoreline environment were examined. The transformation of chain structure and chemical composition of masks and gloves as well as the decreased mechanical strength after UV weathering were observed. In addition, the physical abrasion caused by sand further exacerbated the release of MPs and leachable hazardous contaminates from masks and gloves. In conclusion, the coastal zone is threatened by various pollutants, including traditional pollutants (like the oil spill) and emerging pollutants (like MPs). Due to the complexity of the coastal zone, the occurrence, transport and fate of pollutants can be controlled by many factors, and some factors that are ignored before can also alter the environmental behavior of pollutants in the coastal zone. Natural NBs can change the properties of the water environment and affect the surface properties of the substrate. Bulk NBs contribute to the oil detachment from the sand surface, and surface nanobubbles in the substrate obstruct the downward transport of oil colloids. The behavior and mobilization of MPs in the coastal `zone are subject to mutual forces between the substrate, MPs, NBs, and other factors. Coastal zones are not only the main receptor of pollutants from oceans and lands but also play a key role in their fate and transport.
-
RÉSUMÉ : Le fjord du Saguenay est une vallée glacière de 110 km de long et de 280 m de profondeur maximale qui relie la rivière Saguenay à sa tête à l'estuaire du Saint-Laurent à son embouchure. La bathymétrie du fjord est caractérisée par 3 seuils : le seuil peu profond (~ 20 m) à l'embouchure, un seuil intermédiaire (60 m) à 20 km en amont et un seuil profond (120 m) à 35 km en amont. Ces seuils séparent le fjord en 3 bassins : le bassin extérieur, le bassin intermédiaire et le bassin intérieur. La circulation dans le fjord est forcée par l'apport d'eau douce de la rivière Saguenay à sa tête, de grandes marées (jusqu'à 6 m de marnage) à son embouchure qui apportent de l'eau salée ainsi que par le vent. La circulation à grande échelle a été caractérisée par trois régimes saisonniers au cours desquels les eaux profondes, intermédiaires et de sous-surface du bassin intérieur sont renouvelées respectivement au début de l'hiver, en été et à la fin de l'hiver. Des indications indirectes suggèrent que ces régimes sont déterminés par des processus turbulents qui se produisent localement à chacun de ces trois seuils. Ici, nous présentons les résultats des expériences de terrain que nous avons menées qui visaient à étudier plus directement la dynamique des processus de seuil induits par les courants de marées ainsi que les modifications de masse d'eau qui surviennent aux seuils. À ce jour, nos mesures fournissent la description la plus précise et la plus complète des structures d'écoulement de marée stratifié autour des seuils internes du fjord du Saguenay. Nous avons également observé qu'un ressaut hydraulique interne semble se former lors de chaque marée descendante en aval du seuil intermédiaire, mais pas lors des marées montantes. Des recherches sont toujours en cours pour mieux comprendre cette asymétrie, mais notre hypothèse est que la présence d'une masse d'eau plus salée en amont du seuil intermédiaire empêche la formation d'un ressaut hydraulique, un processus qui pourrait être similaire à celui documenté à Knight Inlet (Colombie-Britannique, Canada). -- Mot(s) clé(s) en français : Fjord du Saguenay, Estuaire du St-Laurent, Processus de Seuil, Mélange Turbulent, Océanographique Côtière. -- ABSTRACT : The Saguenay Fjord is a 110 km long and 280 m deep (max depth) multi-silled glacial valley that connects the Saguenay River at its head with the St. Lawrence Estuary at its mouth. The bathymetry is characterized by 3 sills : a shallow 20-m deep sill at the mouth, an intermediate 60-m deep sill 20 km up-fjord and a deep 120-m sill 35 km up-fjord. These sills separate 3 basins, the outer, the intermediate and the inner basins. The circulation in the fjord is forced by the Saguenay River at its head that brings freshwater, large tides (up to 6 m range) at its mouth that brings salt water and by wind. The large-scale circulation has been characterized by four seasonally dependent regimes during which the deep, intermediate and subsurface waters of the inner basin are being renewed, respectively, during early winter, summer and late winter. There are indirect indications that those regimes are determined by turbulent processes occurring locally at each of these three sills. Here, we carried out field experiments to more directly investigate the detailed dynamics of tidally-driven sill processes and water mass modifications occurring across these three sills. Our measurements provide to date the most accurate and complete description of the stratified tidal flow structures around these sills. We also found that an internal hydraulic jump seems to form every ebb tide on the down-fjord side of the intermediate sill but not during flood tide on the up-fjord side. Research is ongoing to better understand this asymmetry but our hypothesis is that it is the presence of a salty pool up-fjord of the sill that prevents the formation of a hydraulic jump, a process that may be similar to that documented in Knight Inlet (British Columbia, Canada). -- Mot(s) clé(s) en anglais : Saguenay Fjord, St-Lawrence Estuary, Sill Processes, Turbulent Mixing, Coastal Oceanography.
-
RÉSUMÉ: Les événements de submersion sont en augmentation sur les côtes du fleuve Saint-Laurent en raison des tempêtes, de la hausse du niveau marin et de la diminution de la glace de mer. À ce jour, le Québec ne possède pas de zonage de la submersion. Dans le cadre de cette thèse, une approche de cartographie de la submersion est développée en intégrant les vagues, les niveaux d'eau et la morphologie des plages de l'estuaire et du golfe du Saint-Laurent (EGSL). Deux types d'approches cartographiques ont été comparés : la simulation empirique qui projette un niveau total statique sur le territoire (niveau d'eau observé + effet des vagues sur la côte, le jet de rive ou runup), et le modèle numérique XBeach en mode surfbeat. Ces deux approches nécessitent une surface topo-bathymétrique précise et actualisée de la plage. Grâce au développement d'un réseau de suivi des plages par vidéo, nous évaluons dans un premier temps l'efficacité d'une méthode de topographie intertidale par vidéo par rapport à des levés LiDAR terrestres, et améliorons sa performance en intégrant les niveaux d'eau près de la plage au module d'élévation des lignes d'eau. Ce projet a permis la création de surfaces topographiques à précision centimétrique comparable au LiDAR et d'y extraire des paramètres morphologiques, comme la pente de la plage, nécessaire aux modèles empiriques de niveaux d'eau. La capacité des deux approches de cartographie à simuler la submersion du 6 décembre 2010 au Bas-Saint-Laurent a ensuite été analysée en comparant les surfaces inondées. La correspondance spatiale entre les simulations et les observations de submersion a été évaluée. Il en ressort que malgré la complexité du modèle XBeach et une légère surprédiction du modèle empirique (36%), les surfaces submergées obtenues par les deux approches sont similaires et correctement prédites à hauteur de 66-78%. Dans le cadre d'une troisième étude, XBeach a également été utilisé dans la baie des Chaleurs pour évaluer l'impact d'un événement extrême pour l'horizon 2100 sur l'aléa de submersion. Les simulations montrent que les débordements côtiers ont été engendrés par des vagues de relativement faible amplitude à la côte (Hs < 1 m) et que malgré des profondeurs d'eau avoisinant 1,2 m, des vitesses de courants élevées se sont produites dans les espaces urbanisés (U > 2 m/s). L'analyse de la cartographie de la submersion à Maria suggère qu'en 2100, l'impact de la hausse du niveau marin sur les communautés riveraines du Saint-Laurent pourrait provoquer des submersions plus vastes avec des profondeurs d'eau et vitesses de courants plus élevées, ce qui pourraient intensifier l'aléa auquel fait face la population. Même si les simulations numériques permettent de comprendre comment les phénomènes physiques engendrent la submersion, l'intérêt de la méthode statique réside dans sa rapidité d'application, mais son efficacité est fonction de la validité et l'applicabilité des modèles empiriques de runup utilisés. Ainsi, le dernier volet de la thèse porte sur le paramétrage d'un modèle empirique de runup adapté à l'EGSL. L'observation du runup (et de ses composantes moyenne et haute fréquence, le setup et le swash) par vidéo réalisée sur 5 plages couvre un large spectre de paramètres environnementaux et de types de côte sur une période de 3 ans. Des analyses de corrélation entre les niveaux d'eau à la côte et les caractéristiques de vagues au large et la pente de plage ont été réalisées. Les résultats montrent que l'influence des paramètres hydrodynamiques sur le runup, setup, et swash est paramétrée de façon similaire. Le rôle de la morphologie de la plage sur le setup est par ailleurs paramétré par une fonction inverse de la pente, alors que le swash est fonction de la racine carrée de la pente. Avec une erreur moyenne de 23 cm et un biais de 2 cm, l'équation de runup proposée offre un fort potentiel d'estimation des niveaux d'eau totaux sur les environnements côtiers diversifiés à fetch limité. Les résultats de la thèse montrent qu'il apparaît pertinent d'utiliser une approche statique p ur identifier les zones les plus vulnérables à la submersion, en autant que l'équation utilisée soit validée sur le type d'environnement en question. En combinant cette approche à des modélisations numériques en zones à forte concentration d'enjeux, il sera possible d'instaurer un premier zonage de la submersion au Québec. -- Mot(s) clé(s) en français : Cartographie de la submersion, Runup, Topographie par vidéo, Vagues infragravitaires, XBeach. -- ABSTRACT: Coastal flood events are increasing on the shores of the St. Lawrence River due to storms, rising sea levels and decreasing sea ice. To date, the province of Québec does not have a coastal flood mapping guideline. In this thesis, a coastal flood mapping approach is developed by integrating waves, water levels and beach morphology of the Estuary and Gulf of St. Lawrence (EGSL). Two types of cartographic approaches were compared: the empirical simulation that projects a static total level overland (observed water level + wave effect on the coast, known as wave runup), and the numerical model XBeach in surfbeat mode. These two approaches require a precise and updated topo-bathymetric surface of the beach. Through the development of a shore-based video monitoring network, we first evaluate the effectiveness of a video intertidal topography method against terrestrial LiDAR surveys, and improve its performance by integrating water levels near the beach as a proxy to beach contour elevetion. This project enabled the creation of centimeter-scale topographic surfaces comparable to LiDAR and the extraction of morphological parameters, such as the beach slope, necessary for empirical runup models. The ability of both mapping approaches to simulate the flood of December 6, 2010 in Bas-Saint-Laurent was analyzed by comparing flooded areas. Spatial correspondence between simulations and the observed flood extent was evaluated. Despite the complexity of XBeach and a slight over-prediction of the empirical model (36%), the flooded areas obtained by the two approaches are similar and correctly predicted by 66-78%. In a third study, XBeach was also used in the Chaleur Bay to assess the impact of an extreme event for the 2100 horizon on coastal flood hazards. The simulations show that the overland flow was generated by waves of relatively low amplitude at the coast (Hs <1 m) and that despite water depths close to 1.2 m, high current velocities occurred in the urbanized areas (U> 2 m/s). The analysis of the flood maps in Maria suggests that by 2100, the impact of sea level rise on coastal communities in the St. Lawrence could lead to larger flooded areas, with deeper water depths and higher flow velocity, intensifying the risk to the population. Although numerical simulations offer an understanding of the physical phenomena that cause coastal flooding, the interest of the static method lies in its convenience, but its effectiveness depends on the validity of the empirical runup models employed. Thus, the last part of the thesis deals with the parameterization of an empirical runup model in the EGSL. Video-based wave runup observations (and of its mean and high frequency components, setup and swash, respectively) on 5 beaches was carried out on a broad spectrum of environmental parameters and coast type over a period of 3 years. Correlation analyzes between coastal water levels (runup, setup, and swash) and offshore wave characteristics and beach slope were performed. The results show that the influence of the hydrodynamic parameters on wave runup, setup, and swash is similarly parameterized. The role of the morphology of the range on the setup is however parameterized by an inverse function of the slope, while the swash is a function of the square root of the slope. With an average error of 23 cm and a 2 cm bias, the original runup equation offers a high potential for estimating total water levels over diverse fetch-limited coastal environments. This thesis shows that it seems appropriate to use a static approach to identify the areas most vulnerable to coastal flooding, as long as the equation used is validated on the specific coastal environment. By combining this approach with numerical modeling in coastal hotspots with multiple issues at stake, it will be possible to introduce a first coasta flood zoning in the province of Québec. -- Mot(s) clé(s) en anglais : Coastal flooding, Runup, Video-derived topography, Infragravity waves, XBeach.