Votre recherche
Résultats 17 ressources
-
Abstract Accelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potential decreases in precipitation, will decrease groundwater recharge and streamflow, particularly for the RCP 8.5 emission scenario. , Plain Language Summary Mountain regions play an important role in water supply, because meltwater from snow and ice feeds rivers during dry periods. Groundwater (water stored in the pore spaces of soils and rock), which flows into rivers, is also an important store of water in mountain areas and may help to protect water resources against the negative impacts of shrinking mountain glaciers. We used extensive field measurements and computer modeling of the Shullcas Watershed in the Peruvian Andes to determine the current and future role of groundwater in the face of climate change. Our model projects that glaciers in our study area will disappear by 2100. The loss of glacier meltwater is buffered in the short term (~30 years) by consistent groundwater flow to rivers. However, in the long term (>60 years), precipitation is expected to decrease and rising temperatures lead to increased evaporation and water use by plants. These factors reduce groundwater recharge and storage, causing dry season streamflow to drop. , Key Points Groundwater accounts for a large fraction of streamflow and only receives minor (~2%) recharge from glaciers in the study catchment in Peru As meltwater decreases, groundwater provides consistent discharge in the near term (~30 years), becoming a larger fraction of streamflow In the long term (>60 years), groundwater storage and discharge decrease in response to higher evapotranspiration and lower precipitation
-
Abstract. Climate models predict amplified warming at high elevations in low latitudes, making tropical glacierized regions some of the most vulnerable hydrological systems in the world. Observations reveal decreasing streamflow due to retreating glaciers in the Andes, which hold 99 % of all tropical glaciers. However, the timescales over which meltwater contributes to streamflow and the pathways it takes – surface and subsurface – remain uncertain, hindering our ability to predict how shrinking glaciers will impact water resources. Two major contributors to this uncertainty are the sparsity of hydrologic measurements in tropical glacierized watersheds and the complication of hydrograph separation where there is year-round glacier melt. We address these challenges using a multi-method approach that employs repeat hydrochemical mixing model analysis, hydroclimatic time series analysis, and integrated watershed modeling. Each of these approaches interrogates distinct timescale relationships among meltwater, groundwater, and stream discharge. Our results challenge the commonly held conceptual model that glaciers buffer discharge variability. Instead, in a subhumid watershed on Volcán Chimborazo, Ecuador, glacier melt drives nearly all the variability in discharge (Pearson correlation coefficient of 0.89 in simulations), with glaciers contributing a broad range of 20 %–60 % or wider of discharge, mostly (86 %) through surface runoff on hourly timescales, but also through infiltration that increases annual groundwater contributions by nearly 20 %. We further found that rainfall may enhance glacier melt contributions to discharge at timescales that complement glacier melt production, possibly explaining why minimum discharge occurred at the study site during warm but dry El Niño conditions, which typically heighten melt in the Andes. Our findings caution against extrapolations from isolated measurements: stream discharge and glacier melt contributions in tropical glacierized systems can change substantially at hourly to interannual timescales, due to climatic variability and surface to subsurface flow processes.
-
TanDEM-X digital elevation model (DEM) is a global DEM released by the German Aerospace Center (DLR) at outstanding resolution of 12 m. However, the procedure for its creation involves the combination of several DEMs from acquisitions spread between 2011 and 2014, which casts doubt on its value for precise glaciological change detection studies. In this work we present TanDEM-X DEM as a high-quality product ready for use in glaciological studies. We compare it to Aerial Laser Scanning (ALS)-based dataset from April 2013 (1 m), used as the ground-truth reference, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) V003 DEM and SRTM v3 DEM (both 30 m), serving as representations of past glacier states. We use a method of sub-pixel coregistration of DEMs by Nuth and Kääb (2011) to determine the geometric accuracy of the products. In addition, we propose a slope-aspect heatmap-based workflow to remove the errors resulting from radar shadowing over steep terrain. Elevation difference maps obtained by subtraction of DEMs are analyzed to obtain accuracy assessments and glacier mass balance reconstructions. The vertical accuracy (± standard deviation) of TanDEM-X DEM over non-glacierized area is very good at 0.02 ± 3.48 m. Nevertheless, steep areas introduce large errors and their filtering is required for reliable results. The 30 m version of TanDEM-X DEM performs worse than the finer product, but its accuracy, −0.08 ± 7.57 m, is better than that of SRTM and ASTER. The ASTER DEM contains errors, possibly resulting from imperfect DEM creation from stereopairs over uniform ice surface. Universidad Glacier has been losing mass at a rate of −0.44 ± 0.08 m of water equivalent per year between 2000 and 2013. This value is in general agreement with previously reported mass balance estimated with the glaciological method for 2012–2014.
-
Objectives. To assess the environmental justice implications of flooding from Hurricane Harvey in Greater Houston, Texas, we analyzed whether the areal extent of flooding was distributed inequitably with respect to race, ethnicity, and socioeconomic status, after controlling for relevant explanatory factors.Methods. Our study integrated cartographic information from Harvey’s Inundation Footprint, developed by the US Federal Emergency Management Agency, with sociodemographic data from the 2012–2016 American Community Survey. Statistical analyses were based on bivariate correlations and multivariate generalized estimating equations.Results. The areal extent of Harvey-induced flooding was significantly greater in neighborhoods with a higher proportion of non-Hispanic Black and socioeconomically deprived residents after we controlled for contextual factors and clustering.Conclusions. Results provide evidence of racial/ethnic and socioeconomic injustices in the distribution of flooding and represent an importa...
-
The 2019 Global Assessment Report on Disaster Risk Reduction (GAR) is informed by the latest data – including Sendai Framework target reporting by countries using the Sendai Framework Monitor
-
Soil moisture is a key variable in Earth systems, controlling the exchange of water and energy between land and atmosphere. Thus, understanding its spatiotemporal distribution and variability is important. Environment and Climate Change Canada (ECCC) has developed a new land surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS land surface scheme features sophisticated parameterizations of hydrological processes, including water transport through the soil. It has been shown to provide more accurate simulations of the temporal and spatial distribution of soil moisture compared to the current operational land surface scheme. Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, we simulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme over an experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps were produced between May and November 2015. Simulated soil moisture values were compared with estimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture and Agri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic Aperture Radar (SAR) imagery. Statistical analysis of the results showed an overall promising performance of the SVS land surface scheme in simulating soil moisture values at high resolution scale. Investigation of the SVS output was conducted both independently of the soil texture, and as a function of the soil texture. The SVS model tends to perform slightly better over coarser textured soils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulated SVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. The Root Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113 over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. The unbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore, results show an Index of Agreement (IA) between the simulated and the derived soil moisture always higher than 0.90.
-
Abstract The snow melt from the High Atlas represents a crucial water resource for crop irrigation in the semiarid regions of Morocco. Recent studies have used assimilation of snow cover area data from high‐resolution optical sensors to compute the snow water equivalent and snow melt in other mountain regions. These techniques however require large model ensembles, and therefore it is a challenge to determine the adequate model resolution that yields accurate results with reasonable computation time. Here we study the sensitivity of an energy balance model to the resolution of the model grid for a pilot catchment in the High Atlas. We used a time series of 8‐m resolution snow cover area maps with an average revisit time of 7.5 days to evaluate the model results. The digital elevation model was generated from Pléiades stereo images and resampled from 8 to 30, 90, 250, 500, and 1,000 m. The results indicate that the model performs well from 8 to 250 m but the agreement with observations drops at 500 m. This is because significant features of the topography were too smoothed out to properly characterize the spatial variability of meteorological forcing, including solar radiation. We conclude that a resolution of 250 m might be sufficient in this area. This result is consistent with the shape of the semivariogram of the topographic slope, suggesting that this semivariogram analysis could be used to transpose our conclusion to other study regions. , Key Points A distributed energy balance snow model is applied in the High Atlas for the first time The model performance decreases at resolution coarser than 250 m This result is consistent with the semivariogram of the topographic slope
-
Canada regularly faces environmental public health (EPH) disasters. Given the importance of evidence-based, risk-informed decision-making, we aimed to critically assess the integration of EPH expertise and research into each phase of disaster management. In-depth interviews were conducted with 23 leaders in disaster management from Canada, the United States, the United Kingdom, and Australia, and were complemented by other qualitative methods. Three topics were examined: governance, knowledge creation/translation, and related barriers/needs. Data were analyzed through a four-step content analysis. Six critical success factors emerged from the analysis: blending the best of traditional and modern approaches; fostering community engagement; cultivating relationships; investing in preparedness and recovery; putting knowledge into practice; and ensuring sufficient human and financial resources. Several promising knowledge-to-action strategies were also identified, including mentorship programs, communities of practice, advisory groups, systematized learning, and comprehensive repositories of tools and resources. There is no single roadmap to incorporate EPH expertise and research into disaster management. Our findings suggest that preparation for and management of EPH disaster risks requires effective long-term collaboration between science, policy, and EPH practitioners at all levels in order to facilitate coordinated and timely deployment of multi-sectoral/jurisdictional resources when and where they are most needed.